Overlap-free Karatsuba-Ofman Polynomial Multiplication Algorithm

Published in 1962 [1], Karatsuba-Ofman algorithm (KOA) was the first integer multiplication method broke the quadratic complexity barrier in positiona l number systems. Due to its simplicity, its polynomial version is widely adopted to design VLSI GF (2) parallel multipliers inGF (2)based cryptosystems [9]-[27]. Two parameters are often use d to measure the performance of a GF (2) parallel multiplier, namely, the space and time complexiti s. The space complexity is often represented in terms of the total number of 2-input X OR and AND gates used. The corresponding time complexity is given in terms of the maxim um delay faced by a signal due to these XOR and AND gates. Symbols “ TA” and “TX” are often used to represent the delay of one 2-input AND and XOR gates, respectively.

[1]  Jürgen Teich,et al.  FPGA designs of parallel high performance GF(2233) multipliers , 2003, ISCAS.

[2]  Yiqi Dai,et al.  Fast Bit-Parallel GF(2^n) Multiplier for All Trinomials , 2005, IEEE Trans. Computers.

[3]  Rudy Lauwereins,et al.  Design, Automation, and Test in Europe , 2008 .

[4]  Christof Paar,et al.  chitecture for a Parallel Finite lier with Low Complexity Based on Composite Fields Fi , 1996 .

[5]  M. Anwar Hasan,et al.  A New Approach to Subquadratic Space Complexity Parallel Multipliers for Extended Binary Fields , 2007, IEEE Transactions on Computers.

[6]  F. Rodŕıguez-Henŕ,et al.  On fully parallel Karatsuba Multipliers for � , 2003 .

[7]  Sorin A. Huss,et al.  A reconfigurable coprocessor for finite field multiplication in GF (2 n) , 2002 .

[8]  Christof Paar,et al.  Generalizations of the Karatsuba Algorithm for Efficient Implementations , 2006, IACR Cryptol. ePrint Arch..

[9]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[10]  K. Parhi,et al.  Implementation of scalable elliptic curve cryptosystem crypto-accelerators for GF(2/sup m/) , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[11]  Dowon Hong,et al.  Low complexity bit-parallel multiplier for GF(2/sup m/) defined by all-one polynomials using redundant representation , 2005, IEEE Transactions on Computers.

[12]  Çetin Kaya Koç,et al.  On fully parallel Karatsuba multipliers for GF(2 m) , 2003 .

[13]  P. Langendorfer,et al.  An Efficient Polynomial Multiplier in GF(2m) and its Application to ECC Designs , 2007, 2007 Design, Automation & Test in Europe Conference & Exhibition.

[14]  Joachim von zur Gathen,et al.  Modern Computer Algebra (3. ed.) , 2003 .

[15]  Anatolij A. Karatsuba,et al.  Multiplication of Multidigit Numbers on Automata , 1963 .

[16]  Berk Sunar,et al.  A generalized method for constructing subquadratic complexity GF(2/sup k/) multipliers , 2004, IEEE Transactions on Computers.

[17]  Guillaume Hanrot,et al.  A long note on Mulders' short product , 2004, J. Symb. Comput..

[18]  Çetin Kaya Koç,et al.  A less recursive variant of Karatsuba-Ofman algorithm for multiplying operands of size a power of two , 2003, Proceedings 2003 16th IEEE Symposium on Computer Arithmetic.

[19]  Vijay K. Bhargava,et al.  Division And Bit-serial Multiplication Over GF(q/sup m/) , 1991, Proceedings. 1991 IEEE International Symposium on Information Theory.

[20]  Sorin A. Huss,et al.  A Reconfigurable System on Chip Implementation for Elliptic Curve Cryptography over GF(2n) , 2002, CHES.

[21]  Zoya Dyka,et al.  Area efficient hardware implementation of elliptic curve cryptography by iteratively applying Karatsuba's method , 2005, Design, Automation and Test in Europe.

[22]  M. Anwar Hasan,et al.  Comments on "Five, Six, and Seven-Term Karatsuba-Like Formulae' , 2007, IEEE Trans. Computers.

[23]  S. Winograd Arithmetic complexity of computations , 1980 .

[24]  Michele Elia,et al.  Low Complexity Bit-Parallel Multipliers for GF(2^m) with Generator Polynomial x^m+x^k+1 , 1999 .

[25]  Peter L. Montgomery,et al.  Five, six, and seven-term Karatsuba-like formulae , 2005, IEEE Transactions on Computers.

[26]  Jongin Lim,et al.  A Non-redundant and Efficient Architecture for Karatsuba-Ofman Algorithm , 2005, ISC.

[27]  Joachim von zur Gathen,et al.  Efficient FPGA-Based Karatsuba Multipliers for Polynomials over F2 , 2005, Selected Areas in Cryptography.

[28]  Vijay K. Bhargava,et al.  Architecture for a Low Complexity Rate-Adaptive Reed-Solomon Encoder , 1995, IEEE Trans. Computers.