Effects of grid spacing on high-frequency precipitation variance in coupled high-resolution global ocean–atmosphere models

[1]  B. Kirtman,et al.  Understanding the signal-to-noise paradox in decadal climate predictability from CMIP5 and an eddying global coupled model , 2021, Climate Dynamics.

[2]  C. Bishop,et al.  The Navy's Earth System Prediction Capability: A New Global Coupled Atmosphere‐Ocean‐Sea Ice Prediction System Designed for Daily to Subseasonal Forecasting , 2020, Earth and Space Science.

[3]  B. Kirtman,et al.  Forecasting Remote Atmospheric Responses to Decadal Kuroshio Stability Transitions , 2021 .

[4]  W. G. Strand,et al.  An Unprecedented Set of High‐Resolution Earth System Simulations for Understanding Multiscale Interactions in Climate Variability and Change , 2020, Journal of Advances in Modeling Earth Systems.

[5]  C. Jakob,et al.  Benchmarking Simulated Precipitation in Earth System Models , 2020, Bulletin of the American Meteorological Society.

[6]  Kazumi Nakada,et al.  GEOS‐S2S Version 2: The GMAO High‐Resolution Coupled Model and Assimilation System for Seasonal Prediction , 2020, Journal of geophysical research. Atmospheres : JGR.

[7]  Jie He,et al.  Tropical cyclone sensitivities to CO2 doubling: roles of atmospheric resolution, synoptic variability and background climate changes , 2019, Climate Dynamics.

[8]  A. Dai,et al.  Precipitation Characteristics in the Community Atmosphere Model and Their Dependence on Model Physics and Resolution , 2019, Journal of Advances in Modeling Earth Systems.

[9]  J. Farrar,et al.  On the Factors Driving Upper-Ocean Salinity Variability at the Western Edge of the Eastern Pacific Fresh Pool , 2019, Oceanography.

[10]  F. Bryan,et al.  Air–Sea Turbulent Heat Fluxes in Climate Models and Observational Analyses: What Drives Their Variability? , 2019, Journal of Climate.

[11]  K. Taylor,et al.  High‐Frequency Intermittency in Observed and Model‐Simulated Precipitation , 2018, Geophysical Research Letters.

[12]  Michael F. Wehner,et al.  The Benefits of Global High Resolution for Climate Simulation: Process Understanding and the Enabling of Stakeholder Decisions at the Regional Scale , 2018, Bulletin of the American Meteorological Society.

[13]  Eric P. Chassignet,et al.  Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales? , 2017 .

[14]  Chris Kidd,et al.  Global precipitation measurements for validating climate models , 2017 .

[15]  Frank O. Bryan,et al.  Scale Dependence of Midlatitude Air–Sea Interaction , 2017 .

[16]  Sophie Valcke,et al.  Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0 , 2017 .

[17]  E. Pardo‐Igúzquiza,et al.  Spectral analysis of climate cycles to predict rainfall induced landslides in the western Mediterranean (Majorca, Spain) , 2017, Natural Hazards.

[18]  R. Lin,et al.  Reprocessed, Bias-Corrected CMORPH Global High-Resolution Precipitation Estimates from 1998 , 2017 .

[19]  K. Trenberth,et al.  Intermittency in Precipitation: Duration, Frequency, Intensity, and Amounts Using Hourly Data , 2017 .

[20]  K. Thyng,et al.  True Colors of Oceanography: Guidelines for Effective and Accurate Colormap Selection , 2016 .

[21]  Benjamin Kirtman,et al.  Atlantic near‐term climate variability and the role of a resolved Gulf Stream , 2016 .

[22]  C. Wunsch,et al.  ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation , 2015 .

[23]  Andrew T. Wittenberg,et al.  Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate Models , 2015 .

[24]  D. Lawrence,et al.  A new synoptic scale resolving global climate simulation using the Community Earth System Model , 2014 .

[25]  Sungsu Park,et al.  Integrating Cloud Processes in the Community Atmosphere Model, Version 5 , 2014 .

[26]  C. Frantzidis,et al.  Response to Reviewers Reviewer #1 , 2010 .

[27]  J. Bacmeister,et al.  Development of two-moment cloud microphysics for liquid and ice within the NASA Goddard Earth Observing System Model (GEOS-5) , 2013 .

[28]  Reto Knutti,et al.  Imprint of Southern Ocean eddies on winds, clouds and rainfall , 2013 .

[29]  Frank O. Bryan,et al.  Impact of ocean model resolution on CCSM climate simulations , 2012, Climate Dynamics.

[30]  Klaus Wyser,et al.  EC-Earth V2.2: description and validation of a new seamless earth system prediction model , 2012, Climate Dynamics.

[31]  D. Lawrence,et al.  Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model , 2011 .

[32]  A. Sterl,et al.  EC-Earth A Seamless earth-System Prediction Approach in Action , 2010 .

[33]  Frank O. Bryan,et al.  A prototype two-decade fully-coupled fine-resolution CCSM simulation , 2010 .

[34]  Mariana Vertenstein,et al.  The Parallel Ocean Program (POP) reference manual: Ocean component of the Community Climate System Model (CCSM) , 2010 .

[35]  Stephen G. Yeager,et al.  The global climatology of an interannually varying air–sea flux data set , 2009 .

[36]  C. Bretherton,et al.  The University of Washington Shallow Convection and Moist Turbulence Schemes and Their Impact on Climate Simulations with the Community Atmosphere Model , 2009 .

[37]  R. Neale,et al.  The Impact of Convection on ENSO: From a Delayed Oscillator to a Series of Events , 2008 .

[38]  Martin Köhler,et al.  Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time‐scales , 2008 .

[39]  Philip J. Rasch,et al.  Effects of Convective Momentum Transport on the Atmospheric Circulation in the Community Atmosphere Model, Version 3 , 2008 .

[40]  Hiroyasu Hasumi,et al.  Ocean modeling in an eddying regime , 2008 .

[41]  G. Madec NEMO ocean engine , 2008 .

[42]  Shian-Jiann Lin,et al.  Finite-volume transport on various cubed-sphere grids , 2007, J. Comput. Phys..

[43]  Robert A. Weller,et al.  Objectively Analyzed Air–Sea Heat Fluxes for the Global Ice-Free Oceans (1981–2005) , 2007 .

[44]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[45]  M. Maltrud,et al.  An eddy resolving global 1/10° ocean simulation , 2005 .

[46]  S. Klein,et al.  The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations , 2004 .

[47]  Alistair Adcroft,et al.  Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models , 2004 .

[48]  K. Trenberth,et al.  The changing character of precipitation , 2003 .

[49]  Kerry Emanuel,et al.  Development and Evaluation of a Convection Scheme for Use in Climate Models , 1999 .

[50]  C. Reynolds,et al.  Western Pacific Warm Pool Region Sensitivity to Convective Triggering byBoundary Layer Thermals in the NOGAPS Atmospheric GCM , 1998 .

[51]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[52]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[53]  John S. Kain,et al.  Convective parameterization for mesoscale models : The Kain-Fritsch Scheme , 1993 .

[54]  K. Emanuel,et al.  The Representation of Cumulus Convection in Numerical Models , 1993 .

[55]  S. Moorthi,et al.  Relaxed Arakawa-Schubert - A parameterization of moist convection for general circulation models , 1992 .

[56]  K. Emanuel A Scheme for Representing Cumulus Convection in Large-Scale Models , 1991 .

[57]  J. Kain,et al.  A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization , 1990 .

[58]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[59]  A. Kitoh,et al.  The equatorial 30-60 day oscillation and the Arakawa-Schubert penetrative cumulus parameterization , 1988 .

[60]  P. Flament,et al.  Cautionary remarks on the spectral interpretation of turbulent flows , 1985 .