The Gödel universe: Exact geometrical optics and analytical investigations on motion

In this work we derive the analytical solution of the geodesic equations of G\"odel's universe for both particles and light in a special set of coordinates, which reveals the physical properties of this spacetime in a very transparent way. We also recapitulate the equations of isometric transport for points and derive the solution for G\"odel's universe. The equations of isometric transport for vectors are introduced and solved. We utilize these results to transform different classes of curves along Killing vector fields. In particular, we generate nontrivial closed timelike curves from circular closed timelike curves. The results can serve as a starting point for egocentric visualizations in the G\"odel universe.

[1]  W. J. van Stockum,et al.  IX.—The Gravitational Field of a Distribution of Particles Rotating about an Axis of Symmetry , 1937 .

[2]  Hawking,et al.  Chronology protection conjecture. , 1992, Physical review. D, Particles and fields.

[3]  Michael Buser,et al.  Visiting the Gödel Universe , 2008, IEEE Transactions on Visualization and Computer Graphics.

[4]  I. Soares,et al.  Gravitational coupling of Klein-Gordon and Dirac particles to matter vorticity and spacetime torsion , 1992 .

[5]  H. Hatipoğlu,et al.  145 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? , 2005 .

[6]  G. Ellis Relativity: Special, General, and Cosmological , 2005 .

[7]  K. Gödel An Example of a New Type of Cosmological Solutions of Einstein's Field Equations of Gravitation , 1949 .

[8]  Frolov,et al.  Physical effects in wormholes and time machines. , 1990, Physical review. D, Particles and fields.

[9]  Stability of closed timelike curves in the Gödel universe , 2007, gr-qc/0703100.

[10]  J. Tiomno,et al.  Homogeneity of Riemannian space-times of Gödel type , 1983 .

[11]  Jean-Baptiste Lully,et al.  The collected works , 1996 .

[12]  S Chandrasekhar,et al.  THE GEODESICS IN GODEL'S UNIVERSE. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Raychaudhuri,et al.  Homogeneous space-times of the Gödel type , 1980 .

[14]  A. Delgado,et al.  Sagnac Effect of Gödel's Universe , 2004 .

[15]  Matt Visser,et al.  Lorentzian Wormholes: From Einstein to Hawking , 1995 .

[16]  M. Novello,et al.  Geodesic motion and confinement in Gödel's universe , 1983 .

[17]  A. Lasenby,et al.  Bianchi VIIh models and the cold spot texture , 2007, 0712.1789.

[18]  J. Barrow,et al.  Universal rotation - How large can it be? , 1985 .

[19]  K. A. Semendyayev,et al.  Handbook of mathematics , 1985 .

[20]  Gödel’s trip , 2003 .

[21]  Evidence of Vorticity and Shear at Large Angular Scales in the WMAP Data: A Violation of Cosmological Isotropy? , 2005, astro-ph/0503213.

[22]  G. Rassias ADDENDUM TO "ON THE GENUS PROBLEM OF 3-DIMENSIONAL MANIFOLDS AND THE POINCARÉ CONJECTURE" Bulletin de la Société Royale des Sciences de Liège, 50, (1981), 125-128. , 2004 .

[23]  Matthias Zwicker,et al.  Ieee Transactions on Visualization and Computer Graphics Ewa Splatting , 2002 .

[24]  Dynamics and stability of the Godel universe , 2003, gr-qc/0308067.

[25]  H. Stein On the Paradoxical Time-Structures of Gödel , 1970, Philosophy of Science.

[26]  J. Pfarr Time travel in Gödel's space , 1981 .

[27]  Wolfgang Kundt,et al.  Tr¤gheitsbahnen in einem von Gödel angegebenen kosmologischen Modell , 1956 .

[28]  Markov chain Monte Carlo analysis of Bianchi VIIh models , 2006, astro-ph/0605325.