CARLEMAN ESTIMATES AND INVERSE PROBLEMS FOR SECOND ORDER HYPERBOLIC EQUATIONS
暂无分享,去创建一个
The author considers the problem of finding the time-independent coefficients of a second order hyperbolic equation from the Cauchy data at the initial moment and on a part of the lateral surface of a cylindrical domain. Estimates of Hormander's Carleman type are obtained. On the basis of these estimates the uniqueness of the extension of the Cauchy data is proved, as well as the uniqueness of recovering the time-independent coefficients of hyperbolic equations.Bibliography: 9 titles.
[1] V. Isakov. Uniqueness of extension of solutions of hyperbolic equations , 1982 .
[2] M. Protter,et al. Asymptotic Behavior and the Cauchy Problem for Ultrahyperbolic Operators , 1974 .
[3] J. Hadamard,et al. Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques : leçons professées à l'Université Yale , 1932 .
[4] Dr. M. G. Worster. Methods of Mathematical Physics , 1947, Nature.