Some Computational Aspects of the Time and Frequency Domain Formulations of Seismic Waveform Inversion

Seismic waveform inversion relies on efficient solutions of the elasto-dynamic wave equations. The associated inverse problem can be formulated either in the time domain or in the frequency domain. The choice between these two approaches mainly depends on their numerical efficiency. Here, I discuss some of the computational aspects of the frequency-domain solution of the visco-acoustic vertical transverse isotropic wave equations based on a Krylov subspace iterative solver and a complex shifted Laplace preconditioner. In the context of least-square migration or non-linear impedance inversion, the frequency domain approaches are currently not attractive because a complete frequency band response is required. However, in the context of waveform tomography when a small number of frequency responses are inverted, the frequency-domain approaches become relevant, especially when viscous effects are modeled, depending on the geological context.

[1]  Andreas Griewank,et al.  Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation , 2000, TOMS.

[2]  O. Ghattas,et al.  A Newton-CG method for large-scale three-dimensional elastic full-waveform seismic inversion , 2008 .

[3]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[4]  Jianlin Xia,et al.  On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver , 2011 .

[5]  José M. Carcione,et al.  Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media , 2011 .

[6]  R. G. Pratt,et al.  Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model , 2007 .

[7]  Uri M. Ascher,et al.  Multigrid Preconditioning for Krylov Methods for Time-Harmonic Maxwell's Equations in Three Dimensions , 2002, SIAM J. Sci. Comput..

[8]  W. A. Mulder,et al.  A multigrid solver for 3D electromagnetic diffusion , 2006 .

[9]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[10]  Martin B. van Gijzen,et al.  Nested Krylov Methods for Shifted Linear Systems , 2014, SIAM J. Sci. Comput..

[11]  R. Plessix Three-dimensional frequency-domain full-waveform inversion with an iterative solver , 2009 .

[12]  Joakim O. Blanch,et al.  Modeling of a constant Q; methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique , 1995 .

[13]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[14]  Ludovic Métivier,et al.  Computationally efficient three-dimensional acoustic finite-difference frequency-domain seismic modeling in vertical transversely isotropic media with sparse direct solver , 2014 .

[15]  Dan Gordon,et al.  Robust and highly scalable parallel solution of the Helmholtz equation with large wave numbers , 2013, J. Comput. Appl. Math..

[16]  A. Tarantola,et al.  Two‐dimensional nonlinear inversion of seismic waveforms: Numerical results , 1986 .

[17]  Eric Duveneck,et al.  Acoustic VTI Wave Equations And Their Application For Anisotropic Reverse-time Migration , 2008 .

[18]  R. G. Pratt,et al.  Two‐dimensional velocity models from wide‐angle seismic data by wavefield inversion , 1996 .

[19]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[20]  Ludovic Métivier,et al.  Full Waveform Inversion and the Truncated Newton Method , 2013, SIAM J. Sci. Comput..

[21]  R. Christensen Theory of viscoelasticity : an introduction , 1971 .

[22]  G. Chavent,et al.  Inversion of normal incidence seismograms , 1982 .

[23]  S. Operto,et al.  3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study , 2007 .

[24]  Wim A. Mulder,et al.  Exploring some issues in acoustic full waveform inversion , 2008 .

[25]  Tariq Alkhalifah,et al.  An acoustic wave equation for anisotropic media , 2000 .

[26]  Guy Chavent,et al.  Nonlinear Least Squares for Inverse Problems: Theoretical Foundations and Step-by-Step Guide for Applications , 2009 .

[27]  Dianne P. O'Leary,et al.  A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..

[28]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[29]  Guy Chavent,et al.  Nonlinear Least Squares for Inverse Problems , 2010 .

[30]  R. Plessix A review of the adjoint-state method for computing the gradient of a functional with geophysical applications , 2006 .

[31]  Maxim A. Olshanskii Iterative Methods For Linear Systems , 2017 .

[32]  A. Morelli Inverse Problem Theory , 2010 .

[33]  René-Édouard Plessix,et al.  Separation-of-variables as a preconditioner for an iterative Helmholtz solver , 2003 .

[34]  R. Plessix,et al.  Thematic Set: Full waveform inversion of a deep water ocean bottom seismometer dataset , 2010 .

[35]  Lijian Tan,et al.  Time-reversal checkpointing methods for RTM and FWI , 2012 .

[36]  Xiaoye S. Li,et al.  Frequency response modelling of seismic waves using finite difference time domain with phase sensitive detection (TD–PSD) , 2007 .

[37]  René-Édouard Plessix,et al.  An approach for 3D multisource, multifrequency CSEM modeling , 2007 .

[38]  Cornelis Vuik,et al.  On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .

[39]  B. Engquist,et al.  Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.

[40]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[41]  René-Édouard Plessix,et al.  A Helmholtz iterative solver for 3D seismic-imaging problems , 2007 .

[42]  R. Christensen Chapter VIII – Nonlinear Viscoelasticity , 1982 .

[43]  K. Marfurt Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .

[44]  Albert Tarantola,et al.  Theoretical background for the inversion of seismic waveforms including elasticity and attenuation , 1988 .

[45]  Martin B. van Gijzen,et al.  IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations , 2008, SIAM J. Sci. Comput..

[46]  Henri Calandra,et al.  A review of the spectral, pseudo‐spectral, finite‐difference and finite‐element modelling techniques for geophysical imaging , 2011 .

[47]  R. Clapp Reverse time migration with random boundaries , 2009 .