Role of drawing-induced residual stresses and strains in the hydrogen embrittlement susceptibility of prestressing steels

[1]  J. Toribio,et al.  Hydrogen Degradation of Cold-Drawn Wires: A Numerical Analysis of Drawing-Induced Residual Stresses and Strains , 2011 .

[2]  J. Toribio,et al.  Two-Dimensional Numerical Modelling of Hydrogen Diffusion in Metals Assisted by Both Stress and Strain , 2010 .

[3]  Laurent Gaillet,et al.  Hydrogen embrittlement of prestressing cables , 2010 .

[4]  Diego J. Celentano,et al.  Simulation and experimental validation of multiple-step wire drawing processes , 2009 .

[5]  J. Toribio,et al.  Influence of residual stresses and strains generated by cold drawing on hydrogen embrittlement of prestressing steels , 2007 .

[6]  Jesús Toribio,et al.  Failure analysis of cold drawn eutectoid steel wires for prestressed concrete , 2006 .

[7]  Henrik Överstam The influence of bearing geometry on the residual stress state in cold drawn wire, analysed by the FEM , 2006 .

[8]  Manuel Elices,et al.  Residual stresses in cold drawn pearlitic rods , 2005 .

[9]  Jesús Toribio,et al.  Relationship between microstructure and strength in eutectoid steels , 2004 .

[10]  M. Elices Influence of residual stresses in the performance of cold-drawn pearlitic wires , 2004 .

[11]  M. Zelin Microstructure evolution in pearlitic steels during wire drawing , 2002 .

[12]  P. van Houtte,et al.  Residual Stress Determination in Cold Drawn Steel Wire by FEM Simulation and X-Ray Diffraction , 2002 .

[13]  J. Toribio,et al.  Microstructure-based modeling of hydrogen assisted cracking in pearlitic steels , 2001 .

[14]  A. Lodini The recent development of neutronic techniques for determination of residual stresses , 2001 .

[15]  G. A. Webster,et al.  Residual stress distributions and their influence on fatigue lifetimes , 2001 .

[16]  J. Toribio,et al.  A hydrogen diffusion model for applications in fusion nuclear technology , 2000 .

[17]  J. Scully,et al.  Calcium Hydroxide as a Promoter of Hydrogen Absorption in 99.5% Fe and a Fully Pearlitic 0.8% C Steel during Electrochemical Reduction of Water , 2000 .

[18]  J. Toribio,et al.  Micromechanics of hydrogen assisted cracking in progressively drawn steels , 1999 .

[19]  J. Almer,et al.  The effects of residual macrostresses and microstresses on fatigue crack initiation and growth , 2000 .

[20]  Janusz Majta,et al.  Modelling and measurements of mechanical behaviour in multi-pass drawing process , 1998 .

[21]  J. Toribio,et al.  Evaluation of hydrogen assisted cracking: the meaning and significance of the fracture mechanics approach , 1998 .

[22]  L. Vehovar,et al.  Hydrogen-assisted stress-corrosion of prestressing wires in a motorway viaduct , 1998 .

[23]  J. Toribio,et al.  The Effect of History on Hydrogen Assisted Cracking: 1. Coupling of hydrogenation and crack growth , 1997 .

[24]  J. Toribio,et al.  Microstructure evolution in a pearlitic steel subjected to progressive plastic deformation , 1997 .

[25]  J. Toribio,et al.  K‐DOMINANCE CONDITION IN HYDROGEN ASSISTED CRACKING: THE ROLE OF THE FAR FIELD , 1997 .

[26]  C. Bae,et al.  Void initiation and microstructural changes during wire drawing of pearlitic steels , 1995 .

[27]  S. Chan,et al.  Hydrogen embrittlement of AISI 4130 steel with an alternate ferrite/pearlite banded structure , 1991 .

[28]  M. Elices,et al.  Influence of residual stresses on hydrogen embrittlement susceptibility of prestressing steels , 1991 .

[29]  R. McMeeking,et al.  Numerical analysis of hydrogen transport near a blunting crack tip , 1989 .

[30]  V. Kharin Crack growth in deformed metals under the action of hydrogen , 1988 .

[31]  J. Hirth,et al.  Effects of hydrogen on the properties of iron and steel , 1980 .

[32]  F. Bergsma,et al.  Détermination de la sensibilité des aciers précontraints à la fragilisation par l’hydrogène , 1978 .