Thermal interface conductance across metal alloy-dielectric interfaces

We present measurements of thermal interface conductance as a function of metal alloy composition. Composition spread alloy films of $\mathrm{A}{\mathrm{u}}_{x}\mathrm{C}{\mathrm{u}}_{1\ensuremath{-}x}$ and $\mathrm{A}{\mathrm{u}}_{x}\mathrm{P}{\mathrm{d}}_{1\ensuremath{-}x}$ solid solutions were deposited on single crystal sapphire substrates via dual electron-beam evaporation. High throughput measurements of thermal interface conductance across the (metal alloy)-sapphire interfaces were made by positional scanning of frequency domain thermoreflectance measurements to sample a continuum of Au atomic fractions $(x\ensuremath{\sim}0\ensuremath{\rightarrow}1)$. At a temperature of 300 K, the thermal interface conductance at the $\mathrm{A}{\mathrm{u}}_{x}\mathrm{C}{\mathrm{u}}_{1\ensuremath{-}x}$-sapphire interfaces monotonically decreased from $197\ifmmode\pm\else\textpm\fi{}39\phantom{\rule{0.16em}{0ex}}\mathrm{MW}\phantom{\rule{0.16em}{0ex}}{\mathrm{m}}^{\ensuremath{-}2}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}1}$ to $74\ifmmode\pm\else\textpm\fi{}11\phantom{\rule{0.16em}{0ex}}\mathrm{MW}\phantom{\rule{0.16em}{0ex}}{\mathrm{m}}^{\ensuremath{-}2}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}1}$ for $x=0\ensuremath{\rightarrow}0.95\ifmmode\pm\else\textpm\fi{}0.02$ and at the $\mathrm{A}{\mathrm{u}}_{x}\mathrm{P}{\mathrm{d}}_{1\ensuremath{-}x}$-sapphire interfaces from $167\ifmmode\pm\else\textpm\fi{}35\phantom{\rule{0.16em}{0ex}}\mathrm{MW}\phantom{\rule{0.16em}{0ex}}{\mathrm{m}}^{\ensuremath{-}2}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}1}$ to $60\ifmmode\pm\else\textpm\fi{}10\phantom{\rule{0.16em}{0ex}}\mathrm{MW}\phantom{\rule{0.16em}{0ex}}{\mathrm{m}}^{\ensuremath{-}2}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}1}$ for $x=0.03\ensuremath{\rightarrow}0.97\ifmmode\pm\else\textpm\fi{}0.02$. To shed light on the phonon physics at the interface, a Diffuse Mismatch Model for thermal interface conductance with alloys is presented and agrees reasonably with the thermal interface conductance data.