SAR11 marine bacteria require exogenous reduced sulphur for growth

[1]  S. Giovannoni,et al.  Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time Series study site , 2007, The ISME Journal.

[2]  M. Steinke,et al.  Structural and Regulatory Genes Required to Make the Gas Dimethyl Sulfide in Bacteria , 2007, Science.

[3]  Alison Buchan,et al.  Bacterial Taxa That Limit Sulfur Flux from the Ocean , 2006, Science.

[4]  J. McIntosh,et al.  Three-dimensional Structure of the Tiny Bacterium Pelagibacter ubique Studied by Cryo-electron Tomography , 2006, Microscopy and Microanalysis.

[5]  J. Kalinowski,et al.  Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction , 2005, BMC Genomics.

[6]  M. Noordewier,et al.  Genome Streamlining in a Cosmopolitan Oceanic Bacterium , 2005, Science.

[7]  Katherine H. Huang,et al.  The MicrobesOnline Web site for comparative genomics. , 2005, Genome research.

[8]  A. Paytan,et al.  Iron, phytoplankton growth, and the carbon cycle. , 2005, Metal ions in biological systems.

[9]  Michael Y. Galperin,et al.  Genome sequence of the deep-sea γ-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Malmstrom,et al.  Contribution of SAR11 Bacteria to Dissolved Dimethylsulfoniopropionate and Amino Acid Uptake in the North Atlantic Ocean , 2004, Applied and Environmental Microbiology.

[11]  C. Lillig,et al.  Characterization and Reconstitution of a 4Fe-4S Adenylyl Sulfate/Phosphoadenylyl Sulfate Reductase from Bacillus subtilis* , 2004, Journal of Biological Chemistry.

[12]  S. Neumann,et al.  Characterization of the cys gene locus from Allochromatium vinosum indicates an unusual sulfate assimilation pathway* , 2000, Molecular Biology Reports.

[13]  R. Philippis,et al.  Two halophilic Ectothiorhodospira strains with unusual morphological, physiological and biochemical characters , 1988, Archives of Microbiology.

[14]  N. Pfennig,et al.  Die Verwertung von molekularem Wasserstoff durch Chlorobium thiosulfatophilum , 2004, Archiv für Mikrobiologie.

[15]  Alfonso Valencia,et al.  Reductive genome evolution in Buchnera aphidicola , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  William A. Siebold,et al.  SAR11 clade dominates ocean surface bacterioplankton communities , 2002, Nature.

[17]  S. Giovannoni,et al.  Cultivation of the ubiquitous SAR11 marine bacterioplankton clade , 2002, Nature.

[18]  S. Giovannoni,et al.  High-Throughput Methods for Culturing Microorganisms in Very-Low-Nutrient Media Yield Diverse New Marine Isolates , 2002, Applied and Environmental Microbiology.

[19]  C. Pedrós-Alió,et al.  Coupled dynamics of dimethylsulfoniopropionate and dimethylsulfide cycling and the microbial food web in surface waters of the North Atlantic , 2002 .

[20]  R. Amann,et al.  Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea , 2002 .

[21]  Owen White,et al.  The Comprehensive Microbial Resource , 2001, Nucleic Acids Res..

[22]  Nikos Kyrpides,et al.  Genomes OnLine Database (GOLD): a monitor of genome projects world-wide , 2001, Nucleic Acids Res..

[23]  R. Kiene,et al.  The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: tracer studies using 35S-DMSP , 2000 .

[24]  M. Cottrell,et al.  Natural Assemblages of Marine Proteobacteria and Members of the Cytophaga-Flavobacter Cluster Consuming Low- and High-Molecular-Weight Dissolved Organic Matter , 2000, Applied and Environmental Microbiology.

[25]  M. Moran,et al.  Dimethylsulfoniopropionate and Methanethiol Are Important Precursors of Methionine and Protein-Sulfur in Marine Bacterioplankton , 1999, Applied and Environmental Microbiology.

[26]  J. Overmann,et al.  Selective enrichment and characterization of Roseospirillum parvum, gen. nov. and sp. nov., a new purple nonsulfur bacterium with unusual light absorption properties , 1999, Archives of Microbiology.

[27]  S. Fujimoto,et al.  Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism , 1995, Journal of bacteriology.

[28]  Egbert J. de Vries,et al.  Isolation of Typical Marine Bacteria by Dilution Culture: Growth, Maintenance, and Characteristics of Isolates under Laboratory Conditions , 1993, Applied and environmental microbiology.

[29]  L. Daniels,et al.  Assimilatory reduction of sulfate and sulfite by methanogenic bacteria , 1986, Applied and environmental microbiology.

[30]  H. Jannasch,et al.  Assimilatory Sulfur Metabolism in Marine Microorganisms: Sulfur Metabolism, Protein Synthesis, and Growth of Alteromonas luteo-violaceus and Pseudomonas halodurans During Perturbed Batch Growth , 1982, Applied and environmental microbiology.

[31]  N. Pfennig,et al.  [Utilisation of molecular hydrogen by Chlorobium thiosulfatophilum. Growth and CO2-fixation]. , 1969, Archiv fur Mikrobiologie.