Theory and simulation of rotational shear stabilization of turbulence

Numerical simulations of ion temperature gradient (ITG) mode transport with gyrofluid flux tube codes first lead to the rule that the turbulence is quenched when the critical E×B rotational shear rate γE−crit exceeds the maximum of ballooning mode growth rates γ0 without E×B shear [Waltz, Kerbel, and Milovich, Phys. Plasmas 1, 2229 (1994)]. The present work revisits the flux tube simulations reformulated in terms of Floquet ballooning modes which convect in the ballooning mode angle. This new formulation avoids linearly unstable “box modes” from discretizing in the ballooning angle and illustrates the true nonlinear nature of the stabilization in toroidal geometry. The linear eigenmodes can be linearly stable at small E×B shear rates, yet Floquet mode convective amplification allows turbulence to persist unless the critical shear rate is exceeded. The flux tube simulations and the γE−crit≈γ0 quench rule are valid only at vanishing relative gyroradius. Modifications and limits of validity on the quench rul...

[1]  R. Waltz,et al.  A gyro-Landau-fluid transport model , 1997 .

[2]  Steve C. Chiu,et al.  Nondimensional transport scaling in DIII‐D: Bohm versus gyro‐Bohm resolved , 1995 .

[3]  H. Wilson,et al.  Plasma rotation and toroidal drift modes , 1996 .

[4]  K. H. Burrell,et al.  Effects of E×B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices , 1997 .

[5]  R. Waltz,et al.  Action at distance and Bohm scaling of turbulence in tokamaks , 1996 .

[6]  R. L. Miller,et al.  On the nature of rotational shear stabilization in toroidal geometry and its numerical representation , 1994 .

[7]  E. C. Crume,et al.  A model for the L-H transition in tokamaks , 1990 .

[8]  Patrick H. Diamond,et al.  Momentum and thermal transport in neutral‐beam‐heated tokamaks , 1988 .

[9]  Wilson,et al.  Shear damping of drift waves in toroidal plasmas. , 1993, Physical review letters.

[10]  R. Dewar Spectrum of the ballooning Schrödinger equation , 1997 .

[11]  J. Kepner,et al.  Radially global gyrokinetic simulation studies of transport barriers , 1996 .

[12]  Paul W. Terry,et al.  Influence of sheared poloidal rotation on edge turbulence , 1990 .

[13]  S. Mahajan,et al.  Edge turbulence scaling with shear flow , 1991 .

[14]  Jose Milovich,et al.  Toroidal gyro‐Landau fluid model turbulence simulations in a nonlinear ballooning mode representation with radial modes , 1994 .

[15]  T. Hahm Rotation shear induced fluctuation decorrelation in a toroidal plasma , 1994 .

[16]  Y. Kishimoto,et al.  Poloidal shear flow effect on toroidal ion temperature gradient mode: A theory and simulation , 1996 .

[17]  Liu Chen,et al.  Ballooning instabilities in tokamaks with sheared toroidal flows , 1991 .

[18]  Gregory W. Hammett,et al.  Advances in the simulation of toroidal gyro Landau fluid model turbulence , 1995 .

[19]  Hameiri,et al.  Stability of ballooning modes in a rotating plasma. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[20]  R. J. Hastie,et al.  High mode number stability of an axisymmetric toroidal plasma , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  Microinstability properties of negative magnetic shear discharges in the Tokamak Fusion Test Reactor and DIII-D , 1997 .

[22]  W. A. Cooper Ballooning instabilities in tokamaks with sheared toroidal flows , 1988 .