Evaluating Four Multisatellite Precipitation Estimates over the Diaoyu Islands during Typhoon Seasons

AbstractThe Diaoyu Islands are a group of uninhabited islets located in the East China Sea between Japan, China, and Taiwan. Here, four mainstream gauge-adjusted multisatellite precipitation estimates [TRMM Multisatellite Precipitation Analysis, version 7 (TMPA-V7); CPC morphing technique–bias-corrected product (CMORPH-CRT); Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR); and Global Satellite Mapping of Precipitation–gauge adjusted (GSMaP_Gauge)] are adopted to detect the rainfall characteristics of the Diaoyu Islands area with a particular focus on typhoon contribution. Out of the four products, CMORPH-CRT and GSMaP_Gauge show much more similarity both in terms of the spatial patterns and error structures because of their use of the same morphing technique. Overall, GSMaP_Gauge performs better than the other three products, likely because of denser in situ observations integrated in its retrieval algorithms over East Asia. All...

[1]  Ralph Ferraro,et al.  The Development of SSM/I Rain-Rate Retrieval Algorithms Using Ground-Based Radar Measurements , 1995 .

[2]  F. Turk,et al.  Component analysis of errors in satellite-based precipitation estimates , 2009 .

[3]  Pingping Xie,et al.  A conceptual model for constructing high‐resolution gauge‐satellite merged precipitation analyses , 2011 .

[4]  P. Xie,et al.  A Gauge-Based Analysis of Daily Precipitation over East Asia , 2007 .

[5]  T. Kubota,et al.  GSMaP Passive Microwave Precipitation Retrieval Algorithm : Algorithm Description and Validation(2. Global Satellite Mapping of Precipitation (GSMaP) Project, Precipitation Measurements from Space) , 2009 .

[6]  Peiyan Chen,et al.  Verification of Tropical Cyclone–Related Satellite Precipitation Estimates in Mainland China , 2009 .

[7]  Yang Hong,et al.  Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China , 2010 .

[8]  Y. Hong,et al.  Evaluation of Global Flood Detection Using Satellite-Based Rainfall and a Hydrologic Model , 2012 .

[9]  Inge Sandholt,et al.  Evaluation of remote‐sensing‐based rainfall products through predictive capability in hydrological runoff modelling , 2010 .

[10]  Yudong Tian,et al.  A global map of uncertainties in satellite‐based precipitation measurements , 2010 .

[11]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[12]  K. Sawada,et al.  Variability of the path of the Kuroshio ocean current over the past 25,000 years , 1998, Nature.

[13]  S. Sorooshian,et al.  Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks , 1997 .

[14]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[15]  Y. Hong,et al.  Global View Of Real-Time Trmm Multisatellite Precipitation Analysis: Implications For Its Successor Global Precipitation Measurement Mission , 2015 .

[16]  W. Petersen,et al.  Global precipitation measurement: Methods, datasets and applications , 2012 .

[17]  Xi Chen,et al.  First evaluation of the climatological calibration algorithm in the real‐time TMPA precipitation estimates over two basins at high and low latitudes , 2013, Water Resources Research.

[18]  Christian D. Kummerow,et al.  An Observationally Generated A Priori Database for Microwave Rainfall Retrievals , 2011 .

[19]  S. Sorooshian,et al.  Evaluation of PERSIANN system satellite-based estimates of tropical rainfall , 2000 .

[20]  Yang Hong,et al.  Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and Its Utility in Hydrologic Prediction in the La Plata Basin , 2008 .

[21]  Mekonnen Gebremichael,et al.  Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model , 2011 .

[22]  Kenneth P. Bowman,et al.  The Diurnal Cycle of Precipitation in Tropical Cyclones , 2015 .

[23]  Mekonnen Gebremichael,et al.  Evaluation of satellite rainfall estimates over Ethiopian river basins , 2010 .

[24]  Robert F. Adler,et al.  Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA , 2009 .

[25]  Edward J. Zipser,et al.  Weak linkage between the heaviest rainfall and tallest storms , 2015, Nature Communications.

[26]  Yang Hong,et al.  Microwave Satellite Data for Hydrologic Modeling in Ungauged Basins , 2012, IEEE Geoscience and Remote Sensing Letters.

[27]  Neal Lott,et al.  The Integrated Surface Database: Recent Developments and Partnerships , 2011 .

[28]  A. Hou,et al.  The Global Precipitation Measurement Mission , 2014 .

[29]  Akiyo Yatagai,et al.  Development of APHRO_JP, the first Japanese high-resolution daily precipitation product for more than 100 years , 2010 .

[30]  C. O’Reilly,et al.  The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability , 2015 .

[31]  David T. Bolvin,et al.  Improving the global precipitation record: GPCP Version 2.1 , 2009 .

[32]  K. Iwanami,et al.  High precision and high resolution global precipitation map from satellite data , 2008, 2008 Microwave Radiometry and Remote Sensing of the Environment.

[33]  Witold F. Krajewski,et al.  Evaluation of Biases of Satellite Rainfall Estimation Algorithms over the Continental United States , 2002 .

[34]  Dong-Bin Shin,et al.  The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors , 2001 .

[35]  Yang Hong,et al.  Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? , 2014 .

[36]  R. Adler,et al.  Contribution of Tropical Cyclones to the North Pacific Climatological Rainfall as Observed from Satellites , 2013 .

[37]  Z. Kawasaki,et al.  A Kalman Filter Approach to the Global Satellite Mapping of Precipitation (GSMaP) from Combined Passive Microwave and Infrared Radiometric Data , 2009 .

[38]  Yan Shen,et al.  Validation and comparison of a new gauge‐based precipitation analysis over mainland China , 2016 .

[39]  Mekonnen Gebremichael,et al.  Evaluation of High-Resolution Satellite Rainfall Products through Streamflow Simulation in a Hydrological Modeling of a Small Mountainous Watershed in Ethiopia , 2012 .

[40]  A. Kitoh,et al.  APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges , 2012 .

[41]  Tasuku Tanaka,et al.  Indonesian rainfall variability observation using TRMM multi-satellite data , 2013 .

[42]  Y. Hong,et al.  Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China , 2013 .

[43]  J. McBride,et al.  Tropical Cyclone Contribution to Rainfall over Australia , 2012 .

[44]  S. Sorooshian,et al.  PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies , 2015 .

[45]  Witold F. Krajewski,et al.  Evaluation of the research version TMPA three‐hourly 0.25° × 0.25° rainfall estimates over Oklahoma , 2007 .

[46]  Ralph Ferraro,et al.  Microwave Rainfall Estimation over Coasts , 2005 .

[47]  Xiaofan Li,et al.  Precipitation and cloud statistics in the deep tropical convective regime , 2010 .

[48]  Frank D. Marks,et al.  Precipitation Distribution in Tropical Cyclones Using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A Global Perspective , 2004 .

[49]  G. Vecchi,et al.  North Atlantic Tropical Cyclones and U.S. Flooding , 2014 .

[50]  Ricardo C. Nogueira,et al.  Contributions of Atlantic tropical cyclones to monthly and seasonal rainfall in the eastern United States 1960–2007 , 2011 .

[51]  P. Xie,et al.  Performance of high‐resolution satellite precipitation products over China , 2010 .

[52]  John D. Tuttle,et al.  Comparison of Ground-Based Radar and Geosynchronous Satellite Climatologies of Warm-Season Precipitation over the United States , 2008 .

[53]  Kerry A. Emanuel,et al.  The impact of climate change on global tropical cyclone damage , 2012 .

[54]  Olivier P. Prat,et al.  Mapping the world's tropical cyclone rainfall contribution over land using the TRMM Multi‐satellite Precipitation Analysis , 2013 .

[55]  Yang Hong,et al.  Evaluation of the successive V6 and V7 TRMM multisatellite precipitation analysis over the Continental United States , 2013 .

[56]  Yudong Tian,et al.  Validation of precipitation retrievals over land from satellite‐based passive microwave sensors , 2014 .

[57]  Nai-Yu Wang,et al.  A prototype precipitation retrieval algorithm over land using passive microwave observations stratified by surface condition and precipitation vertical structure , 2015 .

[58]  Guosheng Liu,et al.  The relationship between surface rainrate and water paths and its implications to satellite rainrate retrieval , 2012 .

[59]  Misako Kachi,et al.  Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production and Validation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[60]  Kenneth J. Tobin,et al.  Adjusting Satellite Precipitation Data to Facilitate Hydrologic Modeling , 2010 .

[61]  Kuolin Hsu,et al.  Hydrologic evaluation of satellite precipitation products over a mid-size basin , 2011 .