Eccentricity of the geomagnetic dipole caused by lopsided inner core growth

The axis of the geomagnetic field is offset eastwards from Earth’s centre by more than 500 km. Simulations of Earth’s geomagnetic field using a numerical dynamo model show that lopsided growth of the inner core, with faster solidification occurring in one hemisphere, could cause the offset.

[1]  Masaru Kono,et al.  Geomagnetic field model for the last 5 My: time-averaged field and secular variation , 2002 .

[2]  Gauthier Hulot,et al.  Thermochemical flows couple the Earth's inner core growth to mantle heterogeneity , 2008, Nature.

[3]  Xiaodong Song,et al.  Tomographic inversion for three-dimensional anisotropy of Earth’s inner core , 2008 .

[4]  Zhanqing Li,et al.  Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar , 2010 .

[5]  C. Constable,et al.  Improving geomagnetic field reconstructions for 0–3 ka , 2011 .

[6]  L. Margerin,et al.  Lopsided Growth of Earth's Inner Core , 2010, Science.

[7]  Matthew R. Walker,et al.  Four centuries of geomagnetic secular variation from historical records , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  J. Woodhouse,et al.  Normal mode coupling due to hemispherical anisotropic structure in Earth's inner core , 2009 .

[9]  Catherine Constable,et al.  Reconstructing the Holocene geomagnetic field , 2011 .

[10]  T. Alboussière,et al.  Melting-induced stratification above the Earth’s inner core due to convective translation , 2010, Nature.

[11]  A. Chulliat,et al.  Geomagnetic field hemispheric asymmetry and archeomagnetic jerks , 2009 .

[12]  J. Cain,et al.  Eccentric geomagnetic dipole drift , 1985 .

[13]  G. Glatzmaier,et al.  Geodynamo reversal frequency and heterogeneous core–mantle boundary heat flow , 2010 .

[14]  David J. Stevenson,et al.  Limits on lateral density and velocity variations in the Earth's outer core , 1987 .

[15]  David Gubbins,et al.  Melting of the Earth’s inner core , 2011, Nature.

[16]  W. Leng,et al.  A model for the evolution of the Earth's mantle structure since the Early Paleozoic , 2010 .

[17]  Vincent Lesur,et al.  The second generation of the GFZ Reference Internal Magnetic Model: GRIMM-2 , 2010 .

[18]  Christopher C. Finlay,et al.  Historical variation of the geomagnetic axial dipole , 2008 .

[19]  M. Gillan,et al.  Temperature and composition of the Earth's core , 2007 .

[20]  Olson,et al.  A Laboratory Model for Convection in Earth's Core Driven by a Thermally Heterogeneous Mantle. , 1999, Science.

[21]  A. Dziewoński,et al.  Anisotropic shear‐wave velocity structure of the Earth's mantle: A global model , 2008 .

[22]  M. Dumberry,et al.  Steady and fluctuating inner core rotation in numerical geodynamo models , 2011 .

[23]  Catherine Constable,et al.  The time-averaged geomagnetic field as recorded by lava flows over the past 5 Myr , 1995 .

[24]  L. Wen,et al.  Hemispherical variations in seismic velocity at the top of the Earth's inner core , 2001, Nature.

[25]  C. Jones MS 130: Volume 8-Core Dynamics: Thermal and Compositional Convection in the Outer Core , 2022 .

[26]  Mioara Mandea,et al.  The Magnetic Field of Planet Earth , 2010 .

[27]  A. J. Abreu,et al.  Grain growth and loss of texture during annealing of alloys, and the translation of Earth’s inner core , 2010 .

[28]  U. Christensen,et al.  Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields , 2006 .

[29]  R. W. James,et al.  The eccentric dipole , 1967 .

[30]  D. Helmberger,et al.  On seismic resolution of lateral heterogeneity in the Earth's outermost core , 1995 .