Modeling of aircraft unsteady aerodynamic characteristics. Part 2: Parameters estimated from wind tunnel data

Aerodynamic equations with unsteady effects were formulated for an aircraft in one-degree-of-freedom, small-amplitude, harmonic motion. These equations were used as a model for aerodynamic parameter estimation from wind tunnel oscillatory data. The estimation algorithm was based on nonlinear least squares and was applied in three examples to the oscillatory data in pitch and roll of 70 deg triangular wing and an X-31 model, and in-sideslip oscillatory data of the High Incidence Research Model 2 (HIRM 2). All three examples indicated that a model using a simple indicial function can explain unsteady effects observed in measured data. The accuracy of the estimated parameters and model verification were strongly influenced by the number of data points with respect to the number of unknown parameters.