A new approach to the rational interpolation problem: the vector case

We generalize our earlier results on rational interpolation which were given in Van Barel and Bultheel (this journal, 1990) for the scalar case and in Bultheel and Van Barel (1990) for the vector case when all the interpolation points coincide, to the case of vector data given at arbitrary points that may coincide or not. This is the vector-valued Newton-Pade problem. We give a recursive algorithm which has the important advantage over other algorithms that we do not need a reordering of the given interpolation data to overcome a singularity in the interpolation table, not even in the nonnormal vector case. It also generates all the information needed to give all solutions of the problem.

[1]  P. R. Graves-Morris Vector-valued Rational Interpolants II , 1984 .

[2]  Thomas Kailath,et al.  Linear complexity parallel algorithms for linear systems of equations with recursive structure , 1987 .

[3]  Adhemar Bultheel,et al.  A new approach to the rational interpolation problem , 1989 .

[4]  Martin H. Gutknecht,et al.  Continued fractions associated with the Newton-Padé table , 1989 .

[5]  T. Kailath,et al.  An inverse scattering framework for several problems in signal processing , 1987, IEEE ASSP Magazine.

[6]  P. R. Graves-Morris,et al.  Practical, Reliable, Rational Interpolation , 1980 .

[7]  M. Barel,et al.  Minimal Pade-Sense Matrix Approximations Around s = 0 and s = ∞ , 1988 .

[8]  Martin H. Gutknecht,et al.  The rational interpolation problem revisited , 1991 .

[9]  Brian D. O. Anderson,et al.  On the problem of stable rational interpolation , 1989 .

[10]  P. R. Graves-Morris,et al.  Reliable rational interpolation , 1980 .

[11]  G. Heinig,et al.  Structured matrices in interpolation and approximation problems , 1989 .

[12]  Adhemar Bultheel,et al.  Laurent Series and their Padé Approximations , 1987 .

[13]  J. V. Iseghem Approximants de Padé vectoriels , 1987 .

[14]  M. Barel,et al.  A new formal approach to the rational interpolation problem , 1992 .

[15]  Athanasios C. Antoulas,et al.  On the Scalar Rational Interpolation Problem , 1986 .

[16]  M. Barel Nested minimal partial realizations and related matrix rational approximants , 1989 .

[17]  P. R. Graves-Morris,et al.  Vector-valued, rational interpolants III , 1986 .

[18]  P. R. Graves-Morris,et al.  Vector valued rational interpolants I. , 1983 .

[19]  Athanasios C. Antoulas,et al.  Rational interpolation and the Euclidean algorithm , 1988 .

[20]  Helmut Werner Ein Algorithmus zur Rationalen Interpolation , 1980 .

[21]  Helmut Werner,et al.  A reliable method for rational interpolation , 1979 .

[22]  Adhemar Bultheel,et al.  Minimal vector Pade´ approximation , 1989 .

[23]  P. R. Graves-Morris,et al.  Efficient reliable rational interpolation , 1981 .