Transformation behavior of hydrides precipitated with or without stress in Zr-2.5Nb investigated by in-situ S/TEM thermal cycling

[1]  F. Long,et al.  Microstructure and hydrides in the near rolled-joint regions of ex-service CANDU pressure tube , 2020 .

[2]  M. Daymond,et al.  Advanced Characterization of Hydrides in Zirconium Alloys , 2017 .

[3]  M. Daymond,et al.  Zirconium hydrides and Fe redistribution in Zr-2.5%Nb alloy under ion irradiation , 2016 .

[4]  J. I. Mieza,et al.  Study of variables that affect hydrogen solubility in α + β Zr-alloys , 2016 .

[5]  J. Almer,et al.  Effect of crystallite orientation and external stress on hydride precipitation and dissolution in Zr2.5%Nb , 2014 .

[6]  Huijun Li,et al.  Microstructure and texture analysis of δ-hydride precipitation in Zircaloy-4 materials by electron microscopy and neutron diffraction , 2014 .

[7]  M. Daymond,et al.  The Zr20Nb–H phase diagram and the characterisation of hydrides in β-Zr , 2013 .

[8]  Michael C. Billone,et al.  Ductile-to-Brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions , 2013 .

[9]  M. Preuss,et al.  Synchrotron diffraction study of dissolution and precipitation kinetics of hydrides in Zircaloy-4 , 2012 .

[10]  J. Kozinski,et al.  Intergranular δ-hydride nucleation and orientation in zirconium alloys , 2011 .

[11]  M. Daymond,et al.  In situ study of hydride precipitation kinetics and re-orientation in Zircaloy using synchrotron radiation , 2010 .

[12]  H. Abe,et al.  In Situ TEM Observation of Growth Process of Zirconium Hydride in Zircaloy-4 during Hydrogen Ion Implantation , 2009 .

[13]  J. Cui,et al.  Effects of Hydride Morphology and Test Temperature on Fracture Toughness of Zr-2.5Nb Pressure Tube Material , 2009 .

[14]  R. Kuo,et al.  Hydride reorientation in Zircaloy-4 cladding , 2008 .

[15]  Saurin Majumdar,et al.  Radial-hydride Embrittlement of High-burnup Zircaloy-4 Fuel Cladding , 2006 .

[16]  K. Une,et al.  Terminal Solid Solubility of Hydrogen in Unalloyed Zirconium by Differential Scanning Calorimetry , 2004 .

[17]  Ripandeep Singh,et al.  Stress-reorientation of hydrides and hydride embrittlement of Zr-2.5 wt% Nb pressure tube alloy , 2004 .

[18]  Niraj Kumar,et al.  Delayed hydride cracking in Zr–2.5Nb pressure tube material☆ , 2002 .

[19]  A. McMinn,et al.  The Terminal Solid Solubility of Hydrogen in Zirconium Alloys , 2000 .

[20]  M. Hayashi,et al.  Neutron-diffraction measurements of stress , 1995 .

[21]  R. Holt,et al.  Effect of extrusion variables on crystallographic texture of Zr-2.5 wt% Nb , 1985 .

[22]  G. Weatherly,et al.  HYDRIDE PRECIPITATION IN α/β ZIRCONIUM ALLOYS , 1983 .

[23]  D. O. Northwood,et al.  Hydrides and delayed hydrogen cracking in zirconium and its alloys , 1983 .

[24]  J. F. Watters,et al.  An in-situ study of the dissolution of γ-zirconium hydride in zirconium , 1978 .

[25]  R. G. Duncan,et al.  On the existence of a memoty effect in hydride precipitation in cold-worked Zr-2.5% Nb , 1977 .

[26]  E. G. Price,et al.  Hydride orientation and tensile properties of Zr-2.5 wt% Nb pressure tubing hydrided while internally pressurized , 1972 .

[27]  E. Schelzke Hydridorientierung in zircaloy-rohren in abhängigkeit von verformung, textur und spannungen , 1969 .

[28]  R. P. Marshall CONTROL OF HYDRIDE ORIENTATION IN ZIRCALOY BY FABRICATION PRACTICE. , 1967 .

[29]  J. J. Kearns TERMINAL SOLUBILITY AND PARTITIONING OF HYDROGEN IN THE ALPHA PHASE OF ZIRCONIUM, ZIRCALOY-2, AND ZIRCALOY-4. , 1967 .