Transformation behavior of hydrides precipitated with or without stress in Zr-2.5Nb investigated by in-situ S/TEM thermal cycling
暂无分享,去创建一个
[1] F. Long,et al. Microstructure and hydrides in the near rolled-joint regions of ex-service CANDU pressure tube , 2020 .
[2] M. Daymond,et al. Advanced Characterization of Hydrides in Zirconium Alloys , 2017 .
[3] M. Daymond,et al. Zirconium hydrides and Fe redistribution in Zr-2.5%Nb alloy under ion irradiation , 2016 .
[4] J. I. Mieza,et al. Study of variables that affect hydrogen solubility in α + β Zr-alloys , 2016 .
[5] J. Almer,et al. Effect of crystallite orientation and external stress on hydride precipitation and dissolution in Zr2.5%Nb , 2014 .
[6] Huijun Li,et al. Microstructure and texture analysis of δ-hydride precipitation in Zircaloy-4 materials by electron microscopy and neutron diffraction , 2014 .
[7] M. Daymond,et al. The Zr20Nb–H phase diagram and the characterisation of hydrides in β-Zr , 2013 .
[8] Michael C. Billone,et al. Ductile-to-Brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions , 2013 .
[9] M. Preuss,et al. Synchrotron diffraction study of dissolution and precipitation kinetics of hydrides in Zircaloy-4 , 2012 .
[10] J. Kozinski,et al. Intergranular δ-hydride nucleation and orientation in zirconium alloys , 2011 .
[11] M. Daymond,et al. In situ study of hydride precipitation kinetics and re-orientation in Zircaloy using synchrotron radiation , 2010 .
[12] H. Abe,et al. In Situ TEM Observation of Growth Process of Zirconium Hydride in Zircaloy-4 during Hydrogen Ion Implantation , 2009 .
[13] J. Cui,et al. Effects of Hydride Morphology and Test Temperature on Fracture Toughness of Zr-2.5Nb Pressure Tube Material , 2009 .
[14] R. Kuo,et al. Hydride reorientation in Zircaloy-4 cladding , 2008 .
[15] Saurin Majumdar,et al. Radial-hydride Embrittlement of High-burnup Zircaloy-4 Fuel Cladding , 2006 .
[16] K. Une,et al. Terminal Solid Solubility of Hydrogen in Unalloyed Zirconium by Differential Scanning Calorimetry , 2004 .
[17] Ripandeep Singh,et al. Stress-reorientation of hydrides and hydride embrittlement of Zr-2.5 wt% Nb pressure tube alloy , 2004 .
[18] Niraj Kumar,et al. Delayed hydride cracking in Zr–2.5Nb pressure tube material☆ , 2002 .
[19] A. McMinn,et al. The Terminal Solid Solubility of Hydrogen in Zirconium Alloys , 2000 .
[20] M. Hayashi,et al. Neutron-diffraction measurements of stress , 1995 .
[21] R. Holt,et al. Effect of extrusion variables on crystallographic texture of Zr-2.5 wt% Nb , 1985 .
[22] G. Weatherly,et al. HYDRIDE PRECIPITATION IN α/β ZIRCONIUM ALLOYS , 1983 .
[23] D. O. Northwood,et al. Hydrides and delayed hydrogen cracking in zirconium and its alloys , 1983 .
[24] J. F. Watters,et al. An in-situ study of the dissolution of γ-zirconium hydride in zirconium , 1978 .
[25] R. G. Duncan,et al. On the existence of a memoty effect in hydride precipitation in cold-worked Zr-2.5% Nb , 1977 .
[26] E. G. Price,et al. Hydride orientation and tensile properties of Zr-2.5 wt% Nb pressure tubing hydrided while internally pressurized , 1972 .
[27] E. Schelzke. Hydridorientierung in zircaloy-rohren in abhängigkeit von verformung, textur und spannungen , 1969 .
[28] R. P. Marshall. CONTROL OF HYDRIDE ORIENTATION IN ZIRCALOY BY FABRICATION PRACTICE. , 1967 .
[29] J. J. Kearns. TERMINAL SOLUBILITY AND PARTITIONING OF HYDROGEN IN THE ALPHA PHASE OF ZIRCONIUM, ZIRCALOY-2, AND ZIRCALOY-4. , 1967 .