Multiscale approach to CO2 hydrate formation in aqueous solution: phase field theory and molecular dynamics. Nucleation and growth.

A phase field theory with model parameters evaluated from atomistic simulations/experiments is applied to predict the nucleation and growth rates of solid CO(2) hydrate in aqueous solutions under conditions typical to underwater natural gas hydrate reservoirs. It is shown that under practical conditions a homogeneous nucleation of the hydrate phase can be ruled out. The growth rate of CO(2) hydrate dendrites has been determined from phase field simulations as a function of composition while using a physical interface thickness (0.85+/-0.07 nm) evaluated from molecular dynamics simulations. The growth rate extrapolated to realistic supersaturations is about three orders of magnitude larger than the respective experimental observation. A possible origin of the discrepancy is discussed. It is suggested that a kinetic barrier reflecting the difficulties in building the complex crystal structure is the most probable source of the deviations.

[1]  A. A. Wheeler,et al.  Thermodynamically-consistent phase-field models for solidification , 1992 .

[2]  Ihle,et al.  Fractal and compact growth morphologies in phase transitions with diffusion transport. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  K. Ngai,et al.  Flow, diffusion and crystallization of supercooled liquids: Revisited , 2000 .

[4]  A. Haymet,et al.  The ice/water interface: Molecular dynamics simulations of the basal, prism, {202̄1}, and {21̄1̄0} interfaces of ice Ih , 2001 .

[5]  Bjørn Kvamme,et al.  Kinetics of solid hydrate formation by carbon dioxide: Phase field theory of hydrate nucleation and magnetic resonance imagingPresented at the 3rd International Workshop on Global Phase Diagrams, Odessa, Ukraine, September 14?19, 2003. , 2004 .

[6]  A. Haymet,et al.  Ice 1h/water interface of the SPC/E model: Molecular dynamics simulations of the equilibrium basal and prism interfaces , 2002 .

[7]  T. Pusztai,et al.  Nucleation and bulk crystallization in binary phase field theory. , 2002, Physical review letters.

[8]  Mark Asta,et al.  Atomistic computation of liquid diffusivity, solid-liquid interfacial free energy, and kinetic coefficient in Au and Ag , 2002 .

[9]  Ross Anderson,et al.  Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels , 2001 .

[10]  Kenneth F. Kelton,et al.  Transient nucleation in condensed systems , 1983 .

[11]  A. Karma,et al.  Phase-field model of dendritic sidebranching with thermal noise. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[13]  Shuichi Nosé,et al.  Constant Temperature Molecular Dynamics Methods , 1991 .

[14]  Andersen,et al.  10(6)-particle molecular-dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid. , 1990, Physical review. B, Condensed matter.

[15]  David Fincham,et al.  Leapfrog Rotational Algorithms , 1992 .

[16]  James R. Morris Complete mapping of the anisotropic free energy of the crystal-melt interface in Al , 2002 .

[17]  J. Warren,et al.  Growth of 'dizzy dendrites' in a random field of foreign particles , 2003, Nature materials.

[18]  J. Warren,et al.  Modeling the formation and dynamics of polycrystals in 3D , 2005 .

[19]  Jean Bragard,et al.  Linking Phase-Field and Atomistic Simulations to Model Dendritic Solidification in Highly Undercooled Melts , 2001 .

[20]  D. Turnbull Formation of Crystal Nuclei in Liquid Metals , 1950 .

[21]  J. Kwan,et al.  Advances in the study of gas hydrates , 2004 .

[22]  A. L. Greer,et al.  Nucleation in Lithium Disilicate Glass: A Test of Classical Theory by Quantitative Modeling , 1991 .

[23]  Direct calculation of the hard-sphere crystal /Melt interfacial free energy , 2000, Physical review letters.

[24]  T. Pusztai,et al.  Phase field theory of crystal nucleation in hard sphere liquid , 2003, cond-mat/0306527.

[25]  W. Johnson,et al.  Time Scales for Viscous Flow, Atomic Transport, and Crystallization in the Liquid and Supercooled Liquid States of Zr 41.2 Ti 13.8 Cu 12.5 Ni 10.0 Be 22.5 , 1999 .

[26]  A. Karma,et al.  Quantitative phase-field model of alloy solidification. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Hideki Tanaka,et al.  Thermodynamic Stability of Hydrates for Ethane, Ethylene, and Carbon Dioxide , 1995 .

[28]  R. McMahon,et al.  Self-diffusion of tris-naphthylbenzene near the glass transition temperature. , 2003, Physical review letters.

[29]  Britta Nestler,et al.  Phase-field model for solidification of a monotectic alloy with convection , 2000 .

[30]  E. D. Sloan,et al.  Methane hydrate nonstoichiometry and phase diagram , 2003 .

[31]  L. Diamond,et al.  Solubility of CO2 in water from −1.5 to 100 °C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling , 2003 .

[32]  Department of Physics,et al.  EFFICIENT COMPUTATION OF DENDRITIC MICROSTRUCTURES USING ADAPTIVE MESH REFINEMENT , 1998 .

[33]  R. L. Davidchack,et al.  Simulation of the hard-sphere crystal–melt interface , 1998 .

[34]  J. Warren,et al.  A general mechanism of polycrystalline growth , 2004, Nature materials.

[35]  Alain Karma,et al.  Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations , 2002 .

[36]  E. D. Sloan,et al.  Structure H clathrate unit cell coordinates and simulation of the structure H crystal interface with water , 1997 .

[37]  J. Warren,et al.  Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method , 1995 .

[38]  Britta Nestler,et al.  A multi-phase-field model of eutectic and peritectic alloys: numerical simulation of growth structures , 2000 .

[39]  Ho Teng,et al.  Solubility of Liquid CO2 in Synthetic Sea Water at Temperatures from 278 K to 293 K and Pressures from 6.44 MPa to 29.49 MPa, and Densities of the Corresponding Aqueous Solutions , 1998 .

[40]  James M. How Direct observation of order in the liquid at a solid-liquid interface by high-resolution transmission electron microscopy , 1996 .

[41]  Kelton,et al.  Test of classical nucleation theory in a condensed system. , 1988, Physical review. B, Condensed matter.

[42]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[43]  K. Kelton Crystal Nucleation in Liquids and Glasses , 1991 .

[44]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[45]  Alexander P. Lyubartsev,et al.  M.DynaMix – a scalable portable parallel MD simulation package for arbitrary molecular mixtures , 2000 .

[46]  Michel J. Zwanenburg,et al.  Layering of a liquid metal in contact with a hard wall , 1997, Nature.

[47]  S. Hardy A grain boundary groove measurement of the surface tension between ice and water , 1977 .

[48]  D. Oxtoby,et al.  Density Functional Methods in the Statistical Mechanics of Materials , 2002 .

[49]  A. Karma,et al.  Quantitative phase-field modeling of dendritic growth in two and three dimensions , 1996 .

[50]  R. Sekerka,et al.  Stability of a Planar Interface During Solidification of a Dilute Binary Alloy , 1964 .

[51]  Phase-field approach for faceted solidification. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Ross Anderson,et al.  Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica , 2003 .

[53]  Daan Frenkel,et al.  Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy , 2001, Nature.

[54]  M. Grant,et al.  Solidification of a supercooled liquid in a narrow channel. , 2001, Physical review letters.

[55]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[56]  K. Ho,et al.  The Anisotropic Free Energy of the Solid-Liquid Phase Boundary in Al , 2002 .

[57]  M. J. Ruiz-Montero,et al.  Numerical evidence for bcc ordering at the surface of a critical fcc nucleus. , 1995, Physical review letters.

[58]  Mario Castro,et al.  Phase-field approach to heterogeneous nucleation , 2003 .

[59]  A. Karma,et al.  Method for computing the anisotropy of the solid-liquid interfacial free energy. , 2001, Physical review letters.

[60]  K. Kvenvolden,et al.  Potential effects of gas hydrate on human welfare. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[61]  A. Karma Phase-field formulation for quantitative modeling of alloy solidification. , 2001, Physical review letters.

[62]  A. Karma,et al.  Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[63]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[64]  James R. Morris,et al.  The anisotropic free energy of the Lennard-Jones crystal-melt interface , 2003 .

[65]  J. Q. Broughton,et al.  Crystallization Rates of a Lennard-Jones Liquid , 1982 .

[66]  Abbas Firoozabadi,et al.  Nucleation of gas hydrates , 2002 .

[67]  M. Conti Growth of a needle crystal from an undercooled alloy melt , 1997 .

[68]  J. Warren,et al.  Growth and form of spherulites. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Thermodynamic properties and phase transtions in the H2O/CO2/CH4 system. , 2006 .

[70]  John E. Hilliard,et al.  Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .

[71]  Peter W Voorhees,et al.  A phase-field model for highly anisotropic interfacial energy , 2001 .

[72]  László Gránásy,et al.  Diffuse interface analysis of crystal nucleation in hard-sphere liquid , 2002 .

[73]  W. Carter,et al.  Vector-valued phase field model for crystallization and grain boundary formation , 1998 .

[74]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[75]  R. Folch,et al.  Towards a quantitative phase-field model of two-phase solidification. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[77]  D. Turnbull Isothermal Rate of Solidification of Small Droplets of Mercury and Tin , 1950 .

[78]  E. D. Sloan,et al.  Fundamental principles and applications of natural gas hydrates , 2003, Nature.

[79]  Alain Karma,et al.  Eutectic colony formation: a phase-field study. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  P. Clancy,et al.  The kinetics of crystal growth and dissolution from the melt in Lennard‐Jones systems , 1995 .

[81]  E. Brener,et al.  Morphology diagram of possible structures in diffusional growth , 1998 .

[82]  D. Kinderlehrer,et al.  Morphological Stability of a Particle Growing by Diffusion or Heat Flow , 1963 .

[83]  D. Frenkel,et al.  Prediction of absolute crystal-nucleation rate in hard-sphere colloids , 2001, Nature.

[84]  Gustav Amberg,et al.  Phase-field simulation of dendritic growth in a shear flow , 1998 .

[85]  Kwong H. Yung,et al.  Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model , 1995 .

[86]  D. Oxtoby,et al.  NUCLEATION OF LENNARD-JONES FLUIDS : A DENSITY FUNCTIONAL APPROACH , 1996 .

[87]  J. Warren,et al.  Modelling polycrystalline solidification using phase field theory , 2004 .

[88]  Andrew Schofield,et al.  Real-Space Imaging of Nucleation and Growth in Colloidal Crystallization , 2001, Science.

[89]  A. Karma,et al.  Atomistic and continuum modeling of dendritic solidification , 2003 .