Estimating the Global Minimum Variance Portfolio

According to standard portfolio theory, the tangency portfolio is the only efficient stock portfolio. However, empirical studies show that an investment in the global minimum variance portfolio often yields better out-of-sample results than does an investment in the tangency portfolio and suggest investing in the global minimum variance portfolio. But little is known about the distributions of the weights and return parameters of this portfolio. Our contribution is to determine these distributions. By doing so, we answer several important questions in asset management.

[1]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[2]  Gabriel Frahm Linear statistical inference for global and local minimum variance portfolios , 2008 .

[3]  Philippe Jorion International Portfolio Diversification with Estimation Risk , 1985 .

[4]  Philippe Jorion Bayesian and CAPM estimators of the means: Implications for portfolio selection , 1991 .

[5]  Jonathan E. Ingersoll,et al.  Rowman & Littlefield studies in financial economics , 1987 .

[6]  Stephen J. Brown,et al.  Estimation risk and optimal portfolio choice , 1980 .

[7]  David E. Booth,et al.  Applied Multivariate Analysis , 2003, Technometrics.

[8]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[9]  Chi-Fu Huang,et al.  Foundations for financial economics , 1988 .

[10]  Guofu Zhou,et al.  Tests of Mean-Variance Spanning , 2008 .

[11]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[12]  R. C. Merton,et al.  On Estimating the Expected Return on the Market: An Exploratory Investigation , 1980 .

[13]  J. Dickinson,et al.  The Reliability of Estimation Procedures in Portfolio Analysis , 1974, Journal of Financial and Quantitative Analysis.

[14]  J. Ingersoll Theory of Financial Decision Making , 1987 .

[15]  H. Luetkepohl The Handbook of Matrices , 1996 .

[16]  Yarema Okhrin,et al.  Distributional properties of portfolio weights , 2006 .

[17]  G. Dorfleitner Why the Return Notion Matters , 2003 .

[18]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[19]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .