Light emission in nonlocal plasmonic metamaterials (Presentation Recording)

Plasmonic metamaterial composites are often considered to be promising building blocks for a number of applications that include subwavelength light manipulation, imaging, and quantum optics engineering. These applications often rely on effective medium response of metamaterial composites and require metamaterial to operate in exotic (hyperbolic, or epsilon-near-zero) regimes. However, the behaviour of metamaterials is often different from the predictions of effective medium. In this work we aim to understand the implications of composite nature of metamaterials on their optical properties. Plasmonic nanowire metamaterials are a convenient metamaterial platform that is capable of realization of ENZ, hyperbolic, and elliptic responses depending on light frequency and metamaterial geometry. In this work we show that the response of metamaterial in elliptical regime may be strongly affected by the additional electromagnetic wave that represents collective excitation of cylindrical surface plasmons in nanowire arrays. We present an analytical description of optical properties of additional wave and analyse the effect of this mode on quantum emitters inside nanorod metamaterials.