(1+1) genetic algorithm fitness dynamics in a changing environment

We analyze the fitness dynamics of a (1+1) mutation-only genetic algorithm (GA) operating on a family of simple time-dependent fitness functions. Resulting models of behavior are used in the prediction of GA performance on this fitness function. The accuracy of performance predictions are compared to actual GA runs, and results are discussed in relation to analyses of the stationary version of the dynamic fitness landscape and to prior work performed in the field of evolutionary optimization of dynamic fitness functions.

[1]  Thomas Bäck,et al.  The Interaction of Mutation Rate, Selection, and Self-Adaptation Within a Genetic Algorithm , 1992, PPSN.

[2]  Jason M. Daida,et al.  An Individually Variable Mutation-Rate Strategy for Genetic Algorithms , 1997, Evolutionary Programming.

[3]  John J. Grefenstette,et al.  Genetic Algorithms for Changing Environments , 1992, PPSN.

[4]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[5]  Joe Suzuki,et al.  A Markov chain analysis on simple genetic algorithms , 1995, IEEE Trans. Syst. Man Cybern..

[6]  D. Dasgupta Optimisation in Time-Varying environments using Structured Genetic Algorithms , 1994 .

[7]  Michael D. Vose,et al.  Modeling Simple Genetic Algorithms , 1995, Evolutionary Computation.

[8]  Larry Bull,et al.  Evolutionary Computing in Multi-agent Environments: Operators , 1998, Evolutionary Programming.

[9]  Terence C. Fogarty,et al.  Comparison of steady state and generational genetic algorithms for use in nonstationary environments , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[10]  T. Back,et al.  On the behavior of evolutionary algorithms in dynamic environments , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[11]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[12]  Kathleen M. Swigger,et al.  An Analysis of Genetic-Based Pattern Tracking and Cognitive-Based Component Tracking Models of Adaptation , 1983, AAAI.

[13]  P. Stadler Fitness Landscapes , 1993 .

[14]  Kalmanje Krishnakumar,et al.  Micro-Genetic Algorithms For Stationary And Non-Stationary Function Optimization , 1990, Other Conferences.

[15]  Peter J. Angeline,et al.  Tracking Extrema in Dynamic Environments , 1997, Evolutionary Programming.

[16]  Thomas Bäck,et al.  Optimal Mutation Rates in Genetic Search , 1993, ICGA.

[17]  Thomas Bäck,et al.  Selective Pressure in Evolutionary Algorithms: A Characterization of Selection Mechanisms , 1994, International Conference on Evolutionary Computation.

[18]  M. Bitterman THE EVOLUTION OF INTELLIGENCE. , 1965, Scientific American.

[19]  Lothar Thiele,et al.  A Comparison of Selection Schemes Used in Evolutionary Algorithms , 1996, Evolutionary Computation.

[20]  C. Wilke Evolution in time-dependent fitness landscapes , 1998, physics/9811021.

[21]  I. Wegener,et al.  A Rigorous Complexity Analysis Of The (1 + 1)- Evolution Strategy For Separable Functions With Boole , 1998 .

[22]  John J. Grefenstette Predictive Models Using Fitness Distributions of Genetic Operators , 1994, FOGA.

[23]  Helen G. Cobb,et al.  An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic Algorithms Having Continuous, Time-Dependent Nonstationary Environments , 1990 .

[24]  Reinhard Männer,et al.  Towards an Optimal Mutation Probability for Genetic Algorithms , 1990, PPSN.

[25]  Dipankar Dasgupta,et al.  Nonstationary Function Optimization using the Structured Genetic Algorithm , 1992, PPSN.

[26]  John J. Grefenstette,et al.  Genetic Algorithms for Tracking Changing Environments , 1993, ICGA.

[27]  service Topic collections Notes , .

[28]  Thomas Bck,et al.  Self-adaptation in genetic algorithms , 1991 .

[29]  Robert G. Reynolds,et al.  Evolutionary Programming VI , 1997, Lecture Notes in Computer Science.

[30]  Jason M. Daida,et al.  Optimal Mutation and Crossover Rates for a Genetic Algorithm Operating in a Dynamic Environment , 1998, Evolutionary Programming.

[31]  Alden H. Wright,et al.  Simple Genetic Algorithms with Linear Fitness , 1994, Evolutionary Computation.