Stability, electronic and mechanical properties of Fe2B

[1]  Donald J. Siegel,et al.  Reaction energetics and crystal structure of Li 4 BN 3 H 10 from first principles , 2006, cond-mat/0607687.

[2]  E. Jemmis,et al.  Boron and MgB2 analogs of fullerenes and carbon nanotubes: A density functional theory study , 2006 .

[3]  Seshadri Seetharaman,et al.  Site preference and mechanical properties of Cr23−xTxC6 and Fe21T2C6 (T = Mo, W) , 2006 .

[4]  S. Seetharaman,et al.  Atomistic simulation on the structural properties and phase stability for Cr23C6 and Mn23C6 , 2006 .

[5]  Jörg F. Löffler,et al.  Structure and properties of a hypoeutectic chromium steel processed in the semi-solid state , 2006 .

[6]  N. Medvedeva,et al.  Electronic and structural properties of cementite-type M3X (M=Fe, Co, Ni; X=C or B) by first principles calculations , 2006 .

[7]  S. Seetharaman,et al.  Atomistic study on the site preference and thermodynamic properties for Cr23−xFexC6 , 2005 .

[8]  D. Edmonds,et al.  Microstructural and crystallographical study of carbides in 30wt.%Cr cast irons , 2005 .

[9]  J. Nørskov,et al.  Trends in the chemical properties of early transition metal carbide surfaces: A density functional study , 2005 .

[10]  S. Seetharaman,et al.  Atomistic study on the structure and thermodynamic properties of Cr7C3, Mn7C3, Fe7C3 , 2005 .

[11]  Kevin Leung,et al.  Designing meaningful density functional theory calculations in materials science—a primer , 2004 .

[12]  J. Schneider,et al.  Electronic structure and mechanical properties of Cr7C3 , 2004 .

[13]  D. Carpenter,et al.  X-ray diffraction study of M7C3 carbide within a high chromium white iron , 2003 .

[14]  J. E. Lowther,et al.  Possible ultra-hard materials based upon boron icosahedra , 2002 .

[15]  P. Ayyub,et al.  Size dependence of the optical spectrum in nanocrystalline silver , 2002 .

[16]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[17]  N. Calos,et al.  A step towards designing Fe–Cr–B–C cast alloys , 2001 .

[18]  G. B. Olson,et al.  Systems design of high performance stainless steels I. Conceptual and computational design , 2000 .

[19]  I. Moustafa,et al.  Carbide formation mechanism during solidification and annealing of 17% Cr-ferritic steel , 2000 .

[20]  M. Payne,et al.  Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane‐wave study , 2000 .

[21]  G. Hoflund,et al.  Dynamic SIMS study of Cr3C2, Cr7C3 and Cr23C6 , 1998 .

[22]  Xu Zhenming,et al.  Control of solidification structure of wear-resistant austenite-bainite polyphase steel with nodular eutectic , 1997 .

[23]  Bernd G. Pfrommer,et al.  Relaxation of Crystals with the Quasi-Newton Method , 1997 .

[24]  F. Kayser A re-examination of Westbrook's X-ray diffraction pattern for Cr7C3 , 1996 .

[25]  G. Cizeron,et al.  Structural study of M50 steel carbides , 1995 .

[26]  Johansson,et al.  Elastic constants of hexagonal transition metals: Theory. , 1995, Physical review. B, Condensed matter.

[27]  Wills,et al.  Theory of elastic constants of cubic transition metals and alloys. , 1993, Physical review. B, Condensed matter.

[28]  G. Frommeyer,et al.  Microstructure and mechanical properties of melt atomized and rapidly solidified ultrahigh boron alloy steels , 1991 .

[29]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[30]  E. E. Havinga,et al.  Compounds and pseudo-binary alloys with the CuAl2(C16)-type structure I. Preparation and X-ray results , 1972 .

[31]  F. Wever,et al.  Über das Zweistoffsystem Eisen-Bor und über die Struktur des Eisenborides Fe4B2 , 1930 .