Classical dynamics of a nanomechanical resonator coupled to a single-electron transistor

We analyze the dynamics of a nanomechanical resonator coupled to a single-electron transistor (SET) in the regime where the resonator behaves classically. A master equation is derived describing the dynamics of the coupled system which is then used to obtain equations of motion for the average charge state of the SET and the average position of the resonator. We show that the action of the SET on the resonator is very similar to that of a thermal bath, as it leads to a steady-state probability distribution for the resonator which can be described by mean values of the resonator position, a renormalized frequency, an effective temperature, and an intrinsic damping constant. Including the effects of extrinsic damping and finite temperature, we find that there remain experimentally accessible regimes where the intrinsic damping of the resonator still dominates its behavior. We also obtain the average current through the SET as a function of the coupling to the resonator.

[1]  M. Hastings,et al.  Quantum-limited sensitivity of single-electron-transistor-based displacement detectors. , 2003, Physical review letters.

[2]  A. Cleland,et al.  Nanometre-scale displacement sensing using a single electron transistor , 2003, Nature.

[3]  T. Brandes,et al.  Steering of a bosonic mode with a double quantum dot , 2003, cond-mat/0302265.

[4]  M. Roukes,et al.  Nanoelectromechanical systems: Nanodevice motion at microwave frequencies , 2003, Nature.

[5]  D. Schuster,et al.  Measurement of the excited-state lifetime of a microelectronic circuit. , 2003, Physical review letters.

[6]  A. Smirnov,et al.  Nonequilibrium fluctuations and decoherence in nanomechanical devices coupled to the tunnel junction , 2002, cond-mat/0209149.

[7]  M. Cross,et al.  Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays , 2002, cond-mat/0208394.

[8]  A. Gossard,et al.  Nanomechanical displacement sensing using a quantum point contact , 2002 .

[9]  R. Blick,et al.  Integrating suspended quantum dot circuits for applications in nanomechanics , 2002 .

[10]  I. Martin,et al.  Quantum-classical transition induced by electrical measurement. , 2002, Physical review letters.

[11]  K. Schwab,et al.  Spring constant and damping constant tuning of nanomechanical resonators using a single-electron transistor , 2002 .

[12]  M. Blencowe,et al.  Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box. , 2001, Physical review letters.

[13]  M. Blencowe,et al.  Intrinsic noise of a micromechanical displacement detector based on the radio-frequency single-electron transistor , 2001, cond-mat/0109412.

[14]  N. Nishiguchi Gate voltage dependence of a single-electron transistor using the shuttle mechanism , 2001 .

[15]  T. Nord,et al.  Electromechanics of charge shuttling in dissipative nanostructures , 2001, cond-mat/0106589.

[16]  M. Roukes Nanoelectromechanical systems face the future , 2001 .

[17]  M. Blencowe,et al.  Possibility of an electromechanical which-path interferometer , 2001, cond-mat/0101157.

[18]  Mehran Mehregany,et al.  Monocrystalline silicon carbide nanoelectromechanical systems , 2001 .

[19]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[20]  M. Blencowe,et al.  Sensitivity of a micromechanical displacement detector based on the radio-frequency single-electron transistor , 2000, cond-mat/0009272.

[21]  Ernst Meyer,et al.  The noise of cantilevers , 2000 .

[22]  Michel H. Devoret,et al.  Amplifying quantum signals with the single-electron transistor , 2000, Nature.

[23]  M. Blencowe,et al.  Quantum squeezing of mechanical motion for micron-sized cantilevers , 2000 .

[24]  H Germany,et al.  Mechanical mixing in nonlinear nanomechanical resonators , 1999, cond-mat/9912278.

[25]  T. Sudarshan,et al.  Prebreakdown and breakdown investigation of broad area electrodes in the micrometric regime , 1998 .

[26]  R. Schoelkopf,et al.  The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer , 1998, Science.

[27]  A. Isacsson,et al.  SHUTTLE INSTABILITY IN SELF-ASSEMBLED COULOMB BLOCKADE NANOSTRUCTURES , 1998, cond-mat/9804281.

[28]  M. Roukes,et al.  A nanometre-scale mechanical electrometer , 1998, Nature.

[29]  G. Schoen,et al.  Quantum measurements performed with a single-electron transistor , 1998, cond-mat/9801125.

[30]  A. Isacsson,et al.  Shuttle Mechanism for Charge Transfer in Coulomb Blockade Nanostructures , 1997, cond-mat/9711196.

[31]  H. Butt,et al.  Calculation of thermal noise in atomic force microscopy , 1995 .

[32]  A. Korotkov,et al.  Effects of overheating in a single‐electron transistor , 1994 .

[33]  Schoen,et al.  Mesoscopic quantum transport: Resonant tunneling in the presence of a strong Coulomb interaction. , 1994, Physical review. B, Condensed matter.

[34]  An Ultra High Resolution Displacement Transducer Using the Coulomb Blockade Electrometer , 1993 .

[35]  J. Martinis,et al.  Self‐heating in the Coulomb‐blockade electrometer , 1993 .

[36]  Wilkins,et al.  Analytic solution for the current-voltage characteristic of two mesoscopic tunnel junctions coupled in series. , 1991, Physical review. B, Condensed matter.

[37]  R. Muller,et al.  Solid-State Sensor and Actuator Workshop Held in Hilton Head Island, South Carolina on 4-7 June 1990 , 1990 .

[38]  A. Leggett,et al.  Quantum tunnelling in a dissipative system , 1983 .

[39]  Y. Ogawa,et al.  Damping of Brownian motion by cold load , 1977 .

[40]  Ilya Prigogine,et al.  Non-equilibrium statistical mechanics , 1962 .

[41]  M. Bartlett,et al.  An Introduction to Stochastic Processes. , 1956 .