Electrical compartmentalization in dendritic spines.

Most excitatory inputs in the CNS contact dendritic spines, avoiding dendritic shafts, so spines must play a key role for neurons. Recent data suggest that, in addition to enhancing connectivity and isolating synaptic biochemistry, spines can behave as electrical compartments independent from their parent dendrites. It is becoming clear that, although spines experience voltages similar to those of dendrites during action potentials (APs), spines must sustain higher depolarizations than do dendritic shafts during excitatory postsynaptic potentials (EPSPs). Synaptic potentials are likely amplified at the spine head and then reduced as they invade the dendrite through the spine neck. These electrical changes, probably due to a combination of passive and active mechanisms, may prevent the saturation of dendrites by the joint activation of many inputs, influence dendritic integration, and contribute to rapid synaptic plasticity. The electrical properties of spines could enable neural circuits to harness a high connectivity, implementing a "synaptic democracy," where each input can be individually integrated, tallied, and modified in order to generate emergent functional states.

[1]  Rafael Yuste,et al.  Imaging membrane potential in dendritic spines. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[2]  T. Poggio,et al.  Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. Yuste,et al.  Morphological changes in dendritic spines associated with long-term synaptic plasticity. , 2001, Annual review of neuroscience.

[4]  W. Denk,et al.  Mechanisms of Calcium Influx into Hippocampal Spines: Heterogeneity among Spines, Coincidence Detection by NMDA Receptors, and Optical Quantal Analysis , 1999, The Journal of Neuroscience.

[5]  Takashi Yamauchi,et al.  Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography‐tandem mass spectrometry , 2003, Journal of neurochemistry.

[6]  D Purves,et al.  The relation of postsynaptic geometry to the number of presynaptic axons that innervate autonomic ganglion cells , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  Bernardo L Sabatini,et al.  Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells , 2006, Nature Neuroscience.

[8]  L Cohen,et al.  Special Topic: Optical Approaches to Neuron Function , 1989 .

[9]  Z. Nusser,et al.  Molecular Identity of Dendritic Voltage-Gated Sodium Channels , 2010, Science.

[10]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[11]  E. Fifková,et al.  Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer , 1981, Experimental Neurology.

[12]  E. Fifková,et al.  Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation , 1975, Experimental Neurology.

[13]  David M. Blei,et al.  Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models , 2014 .

[14]  Sung-Cherl Jung,et al.  Regulation of Dendritic Excitability by Activity-Dependent Trafficking of the A-Type K+ Channel Subunit Kv4.2 in Hippocampal Neurons , 2007, Neuron.

[15]  T. Powell,et al.  Morphological variations in the dendritic spines of the neocortex. , 1969, Journal of cell science.

[16]  M. Kennedy,et al.  Identification of Proteins in the Postsynaptic Density Fraction by Mass Spectrometry , 2000, The Journal of Neuroscience.

[17]  D W Tank,et al.  Direct Measurement of Coupling Between Dendritic Spines and Shafts , 1996, Science.

[18]  Roberto Araya,et al.  The spine neck filters membrane potentials , 2006, Proceedings of the National Academy of Sciences.

[19]  Nelson Spruston,et al.  Synaptic amplification by dendritic spines enhances input cooperativity , 2012, Nature.

[20]  W Rall,et al.  Computational study of an excitable dendritic spine. , 1988, Journal of neurophysiology.

[21]  I. Segev,et al.  Computer simulation in brain science: Excitable dendritic spine clusters: nonlinear synaptic processing , 1988 .

[22]  Mark Farrant,et al.  Differences in Synaptic GABAA Receptor Number Underlie Variation in GABA Mini Amplitude , 1997, Neuron.

[23]  Roberto Araya,et al.  Dendritic spines linearize the summation of excitatory potentials , 2006, Proceedings of the National Academy of Sciences.

[24]  Masahiko Watanabe,et al.  The SK2-Long Isoform Directs Synaptic Localization and Function of SK2-containing channels , 2011, Nature Neuroscience.

[25]  Rafael Yuste,et al.  Two-photon optogenetics of dendritic spines and neural circuits in 3D , 2012, Nature Methods.

[26]  Perkel Dh Functional role of dendritic spines , 1982 .

[27]  I. Spigelman,et al.  N-type Ca2+ channels are located on somata, dendrites, and a subpopulation of dendritic spines on live hippocampal pyramidal neurons , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  A. Fenton,et al.  A Critical Role for α4βδ GABAA Receptors in Shaping Learning Deficits at Puberty in Mice , 2010, Science.

[29]  J Rinzel,et al.  Propagation of dendritic spikes mediated by excitable spines: a continuum theory. , 1991, Journal of neurophysiology.

[30]  Masahiko Watanabe,et al.  SK2 channel plasticity contributes to LTP at Schaffer collateral–CA1 synapses , 2008, Nature Neuroscience.

[31]  P. Andersen,et al.  A comparison of distal and proximal dendritic synapses on CA1 pyramids in guinea‐pig hippocampal slices in vitro , 1980, The Journal of physiology.

[32]  K. Harris,et al.  Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Rafael Yuste,et al.  Calcium Microdomains in Aspiny Dendrites , 2003, Neuron.

[35]  D. Tank,et al.  Dendritic Integration in Mammalian Neurons, a Century after Cajal , 1996, Neuron.

[36]  Bernardo L. Sabatini,et al.  Analysis of calcium channels in single spines using optical fluctuation analysis , 2000, Nature.

[37]  T. Bonhoeffer,et al.  Live-cell imaging of dendritic spines by STED microscopy , 2008, Proceedings of the National Academy of Sciences.

[38]  K. Svoboda,et al.  Ca2+ signaling in dendritic spines , 2001, Current Opinion in Neurobiology.

[39]  E. G. Gray,et al.  Electron Microscopy of Synaptic Contacts on Dendrite Spines of the Cerebral Cortex , 1959, Nature.

[40]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[41]  Rafael Yuste,et al.  From form to function: calcium compartmentalization in dendritic spines , 2000, Nature Neuroscience.

[42]  E. G. Jones,et al.  Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity , 1989, Brain Research.

[43]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[44]  B. Sabatini,et al.  Glutamate induces de novo growth of functional spines in developing cortex , 2011, Nature.

[45]  A. Peters,et al.  The small pyramidal neuron of the rat cerebral cortex. The synapses upon dendritic spines. , 1969, Zeitschrift fur Zellforschung und mikroskopische Anatomie.

[46]  Rafael Yuste,et al.  Dendritic Spines and Distributed Circuits , 2011, Neuron.

[47]  Rafael Yuste,et al.  On the electrical function of dendritic spines , 2004, Trends in Neurosciences.

[48]  S. W. Jaslove The integrative properties of spiny distal dendrites , 1992, Neuroscience.

[49]  B. Sakmann,et al.  Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[50]  G M Shepherd,et al.  The dendritic spine: a multifunctional integrative unit. , 1996, Journal of neurophysiology.

[51]  Leslie M. Loew,et al.  Second-harmonic generation of biological interfaces: probing the membrane protein bacteriorhodopsin and imaging membrane potential around GFP molecules at specific sites in neuronal cells of C. elegans , 1999 .

[52]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[53]  Rafael Yuste,et al.  Second harmonic imaging of membrane potential of neurons with retinal. , 2004, Journal of biomedical optics.

[54]  D. Perkel,et al.  Dendritic spines: role of active membrane in modulating synaptic efficacy , 1985, Brain Research.

[55]  D H Perkel Functional role of dendritic spines. , 1982, Journal de physiologie.

[56]  Rafael Yuste,et al.  Ultrastructure of Dendritic Spines: Correlation Between Synaptic and Spine Morphologies , 2007, Front. Neurosci..

[57]  N. V. Swindale,et al.  Dendritic spines only connect , 1981, Trends in Neurosciences.

[58]  Eckart D Gundelfinger,et al.  Proteomics Analysis of Rat Brain Postsynaptic Density , 2004, Journal of Biological Chemistry.

[59]  C. Hoogenraad,et al.  Relative and Absolute Quantification of Postsynaptic Density Proteome Isolated from Rat Forebrain and Cerebellum*S , 2006, Molecular & Cellular Proteomics.

[60]  B. Sabatini,et al.  Nonlinear Regulation of Unitary Synaptic Signals by CaV2.3 Voltage-Sensitive Calcium Channels Located in Dendritic Spines , 2007, Neuron.

[61]  F. Crick Do dendritic spines twitch? , 1982, Trends in Neurosciences.

[62]  Sydney Brenner,et al.  Life sentences: Ontology recapitulates philology , 2002, Genome Biology.

[63]  A. Konnerth,et al.  Two-photon Na+ imaging in spines and fine dendrites of central neurons , 1999, Pflügers Archiv.

[64]  Idan Segev,et al.  Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[65]  D H Perkel,et al.  The function of dendritic spines: a review of theoretical issues. , 1985, Behavioral and neural biology.

[66]  Knut Holthoff,et al.  Rapid time course of action potentials in spines and remote dendrites of mouse visual cortex neurons , 2010, The Journal of physiology.

[67]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[68]  Leslie M Loew,et al.  Single-voxel recording of voltage transients in dendritic spines. , 2011, Biophysical journal.

[69]  S. R. Cajal,et al.  Estructura de los centros nerviosos de las Aves , 1888 .

[70]  Brendon O. Watson,et al.  SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators , 2008, Frontiers in neural circuits.

[71]  Bernardo L. Sabatini,et al.  Biphasic Synaptic Ca Influx Arising from Compartmentalized Electrical Signals in Dendritic Spines , 2009, PLoS biology.

[72]  A. Doupe,et al.  Translating birdsong: songbirds as a model for basic and applied medical research. , 2013, Annual review of neuroscience.

[73]  Yasushi Miyashita,et al.  Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001, Nature Neuroscience.

[74]  Roberto Araya,et al.  Sodium channels amplify spine potentials , 2007, Proceedings of the National Academy of Sciences.

[75]  T. Poggio,et al.  A theoretical analysis of electrical properties of spines , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[76]  S. Grant,et al.  The Organization and Integrative Function of the Post-Synaptic Proteome , 2003 .

[77]  G. Stuart,et al.  Membrane Potential Changes in Dendritic Spines during Action Potentials and Synaptic Input , 2009, The Journal of Neuroscience.

[78]  A. Pellionisz,et al.  Brain modeling by tensor network theory and computer simulation. The cerebellum: Distributed processor for predictive coordination , 1979, Neuroscience.

[79]  Nicholas T. Carnevale,et al.  Electrical Advantages of Dendritic Spines , 2012, PloS one.

[80]  Rafael Yuste,et al.  Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions. , 2013, Cerebral cortex.

[81]  J. Jack,et al.  Electric current flow in excitable cells , 1975 .

[82]  R. Yuste Dendritic Spines , 2010 .

[83]  H. T. Chang,et al.  Cortical neurons with particular reference to the apical dendrites. , 1952, Cold Spring Harbor symposia on quantitative biology.

[84]  R. Yuste,et al.  Developmental regulation of spine and filopodial motility in primary visual cortex: reduced effects of activity and sensory deprivation. , 2004, Journal of neurobiology.

[85]  R. Yuste,et al.  Linear Summation of Excitatory Inputs by CA1 Pyramidal Neurons , 1999, Neuron.

[86]  John O'Brien,et al.  Organization of spines on the dendrites of Purkinje cells , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[87]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[88]  R. Luján,et al.  New sites of action for GIRK and SK channels , 2009, Nature Reviews Neuroscience.

[89]  D. Purpura,et al.  Dendritic Spine "Dysgenesis" and Mental Retardation , 1974, Science.

[90]  Rafael Yuste,et al.  Systematic regulation of spine sizes and densities in pyramidal neurons. , 2003, Journal of neurobiology.

[91]  G. Shepherd,et al.  Logic operations are properties of computer-simulated interactions between excitable dendritic spines , 1987, Neuroscience.

[92]  R. Yuste,et al.  Cortical area and species differences in dendritic spine morphology , 2002, Journal of neurocytology.

[93]  R. Llinás,et al.  Electrophysiological properties of dendrites and somata in alligator Purkinje cells. , 1971, Journal of neurophysiology.

[94]  Rafael Yuste,et al.  Role of dendritic spines in action potential backpropagation: a numerical simulation study. , 2002, Journal of neurophysiology.

[95]  Simon J. Mitchell,et al.  Direct measurement of somatic voltage clamp errors in central neurons , 2008, Nature Neuroscience.

[96]  R. Yuste,et al.  Developmental regulation of spine motility in the mammalian central nervous system. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[97]  Bernardo L Sabatini,et al.  Neuronal Activity Regulates Diffusion Across the Neck of Dendritic Spines , 2005, Science.

[98]  A. Konnerth,et al.  NMDA Receptor-Mediated Subthreshold Ca2+ Signals in Spines of Hippocampal Neurons , 2000, The Journal of Neuroscience.

[99]  Rafael Yuste,et al.  Spine Motility Phenomenology, Mechanisms, and Function , 2002, Neuron.

[100]  Rafael Yuste,et al.  Calcium Dynamics of Spines Depend on Their Dendritic Location , 2002, Neuron.

[101]  S. Grant,et al.  Proteomic analysis of NMDA receptor–adhesion protein signaling complexes , 2000, Nature Neuroscience.

[102]  J. Caldwell,et al.  Sodium channel Na(v)1.6 is localized at nodes of ranvier, dendrites, and synapses. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[103]  L. Loew,et al.  Second Harmonic Imaging of Membrane Potential. , 2015, Advances in experimental medicine and biology.

[104]  S. B. Kater,et al.  Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. , 1994, Annual review of neuroscience.

[105]  Rafael Yuste,et al.  Imaging Voltage in Neurons , 2011, Neuron.

[106]  M. Fischer,et al.  Rapid Actin-Based Plasticity in Dendritic Spines , 1998, Neuron.

[107]  A. Hall,et al.  Small GTP-binding proteins and the regulation of the actin cytoskeleton. , 1994, Annual review of cell biology.

[108]  J. Miller,et al.  Synaptic amplification by active membrane in dendritic spines , 1985, Brain Research.

[109]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[110]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[111]  C. Stevens,et al.  Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[112]  B. Sabatini,et al.  SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines , 2005, Nature Neuroscience.

[113]  Yi Zuo,et al.  Spine Neck Plasticity Controls Postsynaptic Calcium Signals through Electrical Compartmentalization , 2008, The Journal of Neuroscience.

[114]  M. Sahani,et al.  Cortical control of arm movements: a dynamical systems perspective. , 2013, Annual review of neuroscience.

[115]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[116]  Dmitri B. Chklovskii,et al.  Wiring Optimization in Cortical Circuits , 2002, Neuron.

[117]  D. McCormick,et al.  α2A-Adrenoceptors Strengthen Working Memory Networks by Inhibiting cAMP-HCN Channel Signaling in Prefrontal Cortex , 2007, Cell.

[118]  J. Wickens Electrically coupled but chemically isolated synapses: Dendritic spines and calcium in a rule for synaptic modification , 1988, Progress in Neurobiology.

[119]  R. G. Willison,et al.  Excitatory synaptic mechanisms , 1971 .

[120]  C. Koch,et al.  The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[121]  Anirvan Ghosh,et al.  Inhibition of SRGAP2 Function by Its Human-Specific Paralogs Induces Neoteny during Spine Maturation , 2012, Cell.

[122]  J. Hopfield,et al.  Computing with neural circuits: a model. , 1986, Science.

[123]  C. Koch,et al.  Electrical properties of dendritic spines , 1983, Trends in Neurosciences.