Circulant embedding with QMC: analysis for elliptic PDE with lognormal coefficients
暂无分享,去创建一个
[1] R. Adler. The Geometry of Random Fields , 2009 .
[2] Frances Y. Kuo,et al. Fast random field generation with H-matrices , 2017, Numerische Mathematik.
[3] A. H. Schatz,et al. Maximum norm estimates in the finite element method on plane polygonal domains. I , 1978 .
[4] R. Adler,et al. The Geometry of Random Fields , 1982 .
[5] Catherine E. Powell,et al. An Introduction to Computational Stochastic PDEs , 2014 .
[6] James A. Nichols,et al. Fast CBC construction of randomly shifted lattice rules achieving O(n-1+δ) convergence for unbounded integrands over R5 in weighted spaces with POD weights , 2014, J. Complex..
[7] R. L. Naff,et al. High‐resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media: 1. Methodology and flow results , 1998 .
[8] Ludmil T. Zikatanov,et al. Improving the Rate of Convergence of High-Order Finite Elements on Polyhedra I: A Priori Estimates , 2005 .
[9] Catherine E. Powell,et al. Preface to "An Introduction to Computational Stochastic PDEs" , 2014 .
[10] Elisabeth Ullmann,et al. Mixed finite element analysis of lognormal diffusion and multilevel Monte Carlo methods , 2013, 1312.6047.
[11] C. R. Dietrich,et al. Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..
[12] Frances Y. Kuo,et al. Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications , 2011, J. Comput. Phys..
[13] Frances Y. Kuo,et al. Analysis of Circulant Embedding Methods for Sampling Stationary Random Fields , 2017, SIAM J. Numer. Anal..
[14] A. H. Schatz,et al. Maximum norm estimates in the finite element method on plane polygonal domains. II. Refinements , 1979 .
[15] T. Apel. Anisotropic Finite Elements: Local Estimates and Applications , 1999 .
[16] Frances Y. Kuo,et al. Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..
[17] H. Harbrecht,et al. On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .
[18] James A. Nichols,et al. Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.
[19] Andrew T. A. Wood,et al. Algorithm AS 312: An Algorithm for Simulating Stationary Gaussian Random Fields , 1997 .
[20] Elisabeth Ullmann,et al. Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.
[21] Frances Y. Kuo,et al. Application of Quasi-Monte Carlo Methods to Elliptic PDEs with Random Diffusion Coefficients: A Survey of Analysis and Implementation , 2016, Foundations of Computational Mathematics.
[22] Eric F Darve,et al. Fast hierarchical algorithms for generating Gaussian random fields , 2015 .
[23] Robert Scheichl,et al. Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..
[24] A. Wood,et al. Simulation of Stationary Gaussian Processes in [0, 1] d , 1994 .