Ontology-Based Human-Computer Cloud for Decision Support: Architecture and Applications in Tourism

Avarietyofinformationprocessinganddecisionsupporttasks(especiallyinthecontextofsmart cityorsmarttouristdestination)relybothontheautomatedandhuman-basedprocedures.Thearticle proposesamulti-layercloudenvironmentthat,first,unifiesvariouskindsofresourcesusedbythese informationprocessinganddecision-supportscenarios(hardware,software,andhuman),andsecond, implementsanontology-basedautomaticservicecompositionproceduresthatcanbeusedtobuildad hocdecision-supportservicesforproblemsunknowninadvance.Theservicecompositionisbased onuniformdescriptionofallpartsoftheenvironmentwithahelpofontologies.Thearticledescribes thearchitectureandmodelsofthenovelhuman-computercloudenvironment.Italsodescribesseveral scenariosofdecisionsupportintourismleveragingtheproposedhuman-computercloudconcept. KEywORDS Crowd Computing, Crowdsourcing, Human in the Loop, Human-Machine Systems, Smart City, Smart Tourism

[1]  Alexander V. Smirnov,et al.  Context-based infomobility system for cultural heritage recommendation: Tourist Assistant—TAIS , 2017, Personal and Ubiquitous Computing.

[2]  Amit P. Sheth,et al.  Semantic Modeling for Cloud Computing, Part 1 , 2010, IEEE Internet Computing.

[3]  Andreas Krause,et al.  Community sense and response systems: your phone as quake detector , 2014, CACM.

[4]  P. Mell,et al.  The NIST Definition of Cloud Computing , 2011 .

[5]  Fausto Giunchiglia,et al.  SmartSociety -- A Platform for Collaborative People-Machine Computation , 2015, 2015 IEEE 8th International Conference on Service-Oriented Computing and Applications (SOCA).

[6]  Symeon Papavassiliou,et al.  Mobile crowdsensing as a service: A platform for applications on top of sensing Clouds , 2016, Future Gener. Comput. Syst..

[7]  Alexander V. Smirnov,et al.  Human-computer cloud for decision support in tourism: Approach and architecture , 2016, 2016 19th Conference of Open Innovations Association (FRUCT).

[8]  Antonio Puliafito,et al.  SAaaS: a Framework for Volunteer-Based Sensing Clouds , 2012 .

[9]  Rodolfo Baggio,et al.  Decision Support Systems in a Tourism Destination: Literature Survey and Model Building , 2005 .

[10]  Hannes Werthner,et al.  Harmonise: A Step Toward an Interoperable E-Tourism Marketplace , 2005, Int. J. Electron. Commer..

[11]  Lydia B. Chilton,et al.  Exploring iterative and parallel human computation processes , 2010, HCOMP '10.

[12]  Schahram Dustdar,et al.  Collective Problem Solving using Social Compute Units , 2013, Int. J. Cooperative Inf. Syst..

[13]  Tarmiji Masron,et al.  THE CONCEPTUAL DESIGN AND APPLICATION OF WEB-BASED TOURISM DECISION SUPPORT SYSTEMS , 2016 .

[14]  Ramesh Govindan,et al.  Medusa: a programming framework for crowd-sensing applications , 2012, MobiSys '12.

[15]  Oksana B. Petrina,et al.  A Semantic Approach to Designing Information Services for Smart Museums , 2016, Int. J. Embed. Real Time Commun. Syst..

[16]  Eric Horvitz,et al.  Combining human and machine intelligence in large-scale crowdsourcing , 2012, AAMAS.

[17]  Ulrike Gretzel,et al.  Intelligent systems in tourism: a social science perspective , 2011 .

[18]  Praveen Paritosh,et al.  The anatomy of a large-scale human computation engine , 2010, HCOMP '10.

[19]  Wolfgang Emmerich,et al.  SLAng: a language for defining service level agreements , 2003, The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems, 2003. FTDCS 2003. Proceedings..

[20]  Giancarlo Guizzardi,et al.  Ontological foundations for structural conceptual models , 2005 .

[21]  Heiko Ludwig,et al.  Web Service Level Agreement (WSLA) Language Specification , 2003 .

[22]  Lior Shamir,et al.  Leveraging Pattern Recognition Consistency Estimation for Crowdsourcing Data Analysis , 2016, IEEE Transactions on Human-Machine Systems.

[23]  Alexander V. Smirnov,et al.  Decision support in tourism based on human-computer cloud , 2016, iiWAS.

[24]  Nikolay Teslya,et al.  Smart tourism destination support scenario based on human-computer cloud , 2016, 2016 19th Conference of Open Innovations Association (FRUCT).

[25]  Amit P. Sheth,et al.  Semantic Modeling for Cloud Computing, Part 2 , 2010, IEEE Internet Computing.

[26]  Alexis Battle,et al.  The jabberwocky programming environment for structured social computing , 2011, UIST.

[27]  Chien-Chih Yu,et al.  Personalized and Community Decision Support in eTourism Intermediaries , 2005, DEXA.

[28]  U. Gretzel,et al.  Smart tourism challenges , 2017 .

[29]  Andrew Ponomarev,et al.  Verification-enabling interaction model for services in smart space: a TAIS case , 2015, 2015 17th Conference of Open Innovations Association (FRUCT).

[30]  Takuro Yonezawa,et al.  The Advantages of IoT and Cloud Applied to Smart Cities , 2015, 2015 3rd International Conference on Future Internet of Things and Cloud.

[31]  Chiara Franzoni,et al.  Crowd Science: The Organization of Scientific Research in Open Collaborative Projects , 2014 .

[32]  Schahram Dustdar,et al.  The Social Compute Unit , 2011, IEEE Internet Computing.

[33]  B. Turner The World Tourism Organization , 2001 .

[34]  Oksana B. Petrina,et al.  Towards an understanding of smart service: The case study for cultural heritage e-Tourism , 2016, 2016 18th Conference of Open Innovations Association and Seminar on Information Security and Protection of Information Technology (FRUCT-ISPIT).

[35]  Jurica Ševa,et al.  Cloud Computing Ontologies: A Systematic Review , 2012 .

[36]  B. Pröll,et al.  Covering the semantic space of tourism: an approach based on modularized ontologies , 2009, CIAO '09.

[37]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..