Ion trap quantum gates with amplitude-modulated laser beams

In ion traps, entangling gate operations can be realized by a bichromatic pair of laser beams that collectively interact with the ions. In this paper, a new method of modelling the laser–ion interaction is introduced that turns out to be superior to standard techniques for the description of gate operations on optical qubits. The treatment allows for a comparison of the performance of gates based on σz⊗σz and σ⊗σ interactions on optical transitions where the bichromatic laser field can be realized by an amplitude-modulated laser resonant with the qubit transition. Shaping the amplitude of the bichromatic laser pulse is shown to make the gates more robust against experimental imperfections.

[1]  W. Dur,et al.  Standard forms of noisy quantum operations via depolarization , 2005 .

[2]  J. P. Home,et al.  Deterministic entanglement and tomography of ion-spin qubits , 2006 .

[3]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[4]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[5]  Gerard J. Milburn,et al.  Ion Trap Quantum Computing with Warm Ions , 2000 .

[6]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[7]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[8]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[9]  Reconstruction of the quantum mechanical state of a trapped ion. , 1995, Physical review letters.

[10]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[11]  C. Monroe,et al.  A “Schrödinger Cat” Superposition State of an Atom , 1996, Science.

[12]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[13]  G. Milburn Simulating nonlinear spin models in an ion trap , 1999 .

[14]  Enrique Solano,et al.  DETERMINISTIC BELL STATES AND MEASUREMENT OF THE MOTIONAL STATE OF TWO TRAPPED IONS , 1999 .

[15]  P. C. Haljan,et al.  Entanglement of trapped-ion clock states , 2005 .

[16]  Mesoscopic superpositions of vibronic collective states of N trapped ions. , 2001, Physical review letters.

[17]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[18]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[19]  L. Aolita,et al.  Geometric phase gate on an optical transition for ion trap quantum computation , 2007, 0710.3950.

[20]  Kevin Cahill,et al.  Ordered Expansions in Boson Amplitude Operators , 1969 .

[21]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[22]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[23]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[24]  L-M Duan,et al.  Phase control of trapped ion quantum gates , 2005 .