Image-Based Modeling by Joint Segmentation

The paper first traces the image-based modeling back to feature tracking and factorization that have been developed in the group led by Kanade since the eighties. Both feature tracking and factorization have inspired and motivated many important algorithms in structure from motion, 3D reconstruction and modeling. We then revisit the recent quasi-dense approach to structure from motion. The key advantage of the quasi-dense approach is that it not only delivers the structure from motion in a robust manner for practical modeling purposes, but also it provides a cloud of sufficiently dense 3D points that allows the objects to be explicitly modeled. To structure the available 3D points and registered 2D image information, we argue that a joint segmentation of both 3D and 2D is the fundamental stage for the subsequent modeling. We finally propose a probabilistic framework for the joint segmentation. The optimal solution to such a joint segmentation is still generally intractable, but approximate solutions are developed in this paper. These methods are implemented and validated on real data set.

[1]  Vladimir Kolmogorov,et al.  Multi-camera Scene Reconstruction via Graph Cuts , 2002, ECCV.

[2]  J J Koenderink,et al.  Affine structure from motion. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[3]  Edward H. Adelson,et al.  Representing moving images with layers , 1994, IEEE Trans. Image Process..

[4]  Ioannis Patras,et al.  Video Segmentation by MAP Labeling of Watershed Segments , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Rachid Deriche,et al.  A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..

[6]  Zhuowen Tu,et al.  Image Segmentation by Data-Driven Markov Chain Monte Carlo , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[8]  Richard Szeliski,et al.  An integrated Bayesian approach to layer extraction from image sequences , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[9]  Reinhard Koch,et al.  Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[10]  Olivier D. Faugeras,et al.  What can be seen in three dimensions with an uncalibrated stereo rig , 1992, ECCV.

[11]  Xiaojin Zhu,et al.  Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning , 2005, ICML.

[12]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[13]  Patrick Pérez,et al.  Interactive Image Segmentation Using an Adaptive GMMRF Model , 2004, ECCV.

[14]  Bill Triggs,et al.  Detecting Keypoints with Stable Position, Orientation, and Scale under Illumination Changes , 2004, ECCV.

[15]  Stéphane Laveau Geometrie d'un systeme a n cameras. Theorie. Estimation. Applications , 1996 .

[16]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[17]  A. Criminisi,et al.  Bilayer Segmentation of Live Video , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[18]  Jian Sun,et al.  Lazy snapping , 2004, SIGGRAPH 2004.

[19]  Andrew Blake,et al.  Bi-layer segmentation of binocular stereo video , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[20]  Long Quan,et al.  Invariants of Six Points and Projective Reconstruction From Three Uncalibrated Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Pascal Fua,et al.  Combining Stereo and Monocular Information to Compute Dense Depth Maps that Preserve Depth Discontinuities , 1991, IJCAI.

[22]  Michael E. Tipping,et al.  Mixtures of Principal Component Analysers , 1997 .

[23]  Long Quan,et al.  Image-based plant modeling , 2006, SIGGRAPH 2006.

[24]  Wolfgang Förstner,et al.  A Framework for Low Level Feature Extraction , 1994, ECCV.

[25]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[26]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[28]  Long Quan,et al.  Relative 3D Reconstruction Using Multiple Uncalibrated Images , 1995, Int. J. Robotics Res..

[29]  R. Zabih,et al.  Spatially coherent clustering using graph cuts , 2004, CVPR 2004.

[30]  Hans P. Moravec Visual Mapping by a Robot Rover , 1979, IJCAI.

[31]  Bill Triggs,et al.  Autocalibration and the absolute quadric , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[32]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[33]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[34]  Maxime Lhuillier,et al.  Efficient Dense Matching for Textured Scenes using Region Growing , 1998, BMVC.

[35]  Pau Gargallo,et al.  Bayesian 3D modeling from images using multiple depth maps , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[36]  Bill Triggs,et al.  Factorization methods for projective structure and motion , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[37]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[38]  O. Faugeras,et al.  The Geometry of Multiple Images , 1999 .

[39]  Peter F. Sturm,et al.  A Factorization Based Algorithm for Multi-Image Projective Structure and Motion , 1996, ECCV.

[40]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[42]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[43]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[44]  Long Quan,et al.  A quasi-dense approach to surface reconstruction from uncalibrated images , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Long Quan,et al.  Modeling hair from multiple views , 2005, SIGGRAPH 2005.

[46]  Luc Van Gool,et al.  Wide Baseline Stereo Matching based on Local, Affinely Invariant Regions , 2000, BMVC.

[47]  C Tomasi,et al.  Shape and motion from image streams: a factorization method. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Richard I. Hartley,et al.  Estimation of Relative Camera Positions for Uncalibrated Cameras , 1992, ECCV.

[49]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[50]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[51]  M. Shah,et al.  Motion layer extraction in the presence of occlusion using graph cut , 2004, CVPR 2004.

[52]  Sylvain Paris,et al.  Accurate and Scalable Surface Representation and Reconstruction from Images , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Jitendra Malik,et al.  Contour and Texture Analysis for Image Segmentation , 2001, International Journal of Computer Vision.

[54]  Stéphane Laveau Géométrie d'un système de N caméras : théorie, estimation et applications. (Geometry of a System of n Cameras. Theory. Estimation. Applications) , 1996 .

[55]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[56]  David Nister,et al.  Automatic Dense Reconstruction from Uncalibrated Video Sequences , 2001 .

[57]  J P Frisby,et al.  PMF: A Stereo Correspondence Algorithm Using a Disparity Gradient Limit , 1985, Perception.

[58]  Long Quan,et al.  Match Propagation for Image-Based Modeling and Rendering , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Serge J. Belongie,et al.  What went where , 2003, CVPR 2003.

[60]  Olivier D. Faugeras,et al.  The geometry of multiple images - the laws that govern the formation of multiple images of a scene and some of their applications , 2001 .

[61]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[62]  Hans P. Moravec Obstacle avoidance and navigation in the real world by a seeing robot rover , 1980 .

[63]  Long Quan,et al.  Relative 3D Reconstruction Using Multiple Uncalibrated Images , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[64]  Harry Shum,et al.  Background Cut , 2006, ECCV.

[65]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.