A New Long-Term Survival Model with Interval-Censored Data

We propose a flexible cure rate survival model by assuming that the number of competing causes of the event of interest has a negative binomial distribution and the time to event has a Weibull distribution for interval-censored data. An advantage is that this model includes as special cases some well-known cure rate models discussed in the literature. We also propose the negative binomial Weibull distribution, which is a quite flexible model to analyze positive data. We provide explicit expressions for the moments and generating function. We consider a frequentist analysis and nonparametric bootstrap for parameter estimation of the negative binomial Weibull regression model for interval-censored data with cure rate. Further, we derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and present some ways to perform global influence analysis. We analyze two real data sets from the medical area to prove the flexibility of the proposed models.

[1]  G. Cordeiro,et al.  The Weibull-geometric distribution , 2008, 0809.2703.

[2]  Francisco Louzada-Neto,et al.  Influence diagnostics for polyhazard models in the presence of covariates , 2008, Stat. Methods Appl..

[3]  Sudhir Paul,et al.  Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter. , 2005, Biometrics.

[4]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[5]  A Yu Yakovlev,et al.  Stochastic Models of Tumor Latency and Their Biostatistical Applications , 1996 .

[6]  Heleno Bolfarine,et al.  Influence diagnostics in generalized log-gamma regression models , 2003, Comput. Stat. Data Anal..

[7]  J. Boag,et al.  Maximum Likelihood Estimates of the Proportion of Patients Cured by Cancer Therapy , 1949 .

[8]  D. A. Preece,et al.  The negative binomial distribution , 1985 .

[9]  V. Cancho,et al.  A note on a unified approach for cure rate models , 2010 .

[10]  Josemar Rodrigues,et al.  A Bayesian long-term survival model parametrized in the cured fraction. , 2009, Biometrical journal. Biometrische Zeitschrift.

[11]  Joseph G. Ibrahim,et al.  Bayesian Survival Analysis , 2004 .

[12]  B. Efron,et al.  Bootstrap confidence intervals , 1996 .

[13]  Deo Kumar Srivastava,et al.  The exponentiated Weibull family: a reanalysis of the bus-motor-failure data , 1995 .

[14]  S W Lagakos,et al.  Analyzing doubly censored data with covariates, with application to AIDS. , 1993, Biometrics.

[15]  R. Écochard,et al.  Promotion Time Models with Time‐Changing Exposure and Heterogeneity: Application to Infectious Diseases , 2008, Biometrical journal. Biometrische Zeitschrift.

[16]  R. Cook Assessment of Local Influence , 1986 .

[17]  Heping Zhang,et al.  A diagnostic procedure based on local influence , 2004 .

[18]  Heleno Bolfarine,et al.  The Log-exponentiated-Weibull Regression Models with Cure Rate: Local Influence and Residual Analysis , 2021, Journal of Data Science.

[19]  M Pagano,et al.  Regression Analysis of Doubly Censored Failure Time Data with Applications to AIDS Studies , 1999, Biometrics.

[20]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[21]  Narayanaswamy Balakrishnan,et al.  Mixture inverse Gaussian distributions and its transformations, moments and applications , 2009 .

[22]  Mauricio Lima Barreto,et al.  Log-Burr XII regression models with censored data , 2008, Comput. Stat. Data Anal..

[23]  R. Maller,et al.  Survival Analysis with Long-Term Survivors , 1996 .

[24]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[25]  W. Piegorsch Maximum likelihood estimation for the negative binomial dispersion parameter. , 1990, Biometrics.

[26]  Samuel Kotz,et al.  The beta exponential distribution , 2006, Reliab. Eng. Syst. Saf..

[27]  B. Turnbull The Empirical Distribution Function with Arbitrarily Grouped, Censored, and Truncated Data , 1976 .

[28]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[29]  J G Ibrahim,et al.  Estimating Cure Rates From Survival Data , 2003, Journal of the American Statistical Association.

[30]  Joseph Berkson,et al.  Survival Curve for Cancer Patients Following Treatment , 1952 .

[31]  Gauss M. Cordeiro,et al.  The log-exponentiated Weibull regression model for interval-censored data , 2010, Comput. Stat. Data Anal..

[32]  Bradley P Carlin,et al.  Flexible Cure Rate Modeling Under Latent Activation Schemes , 2007, Journal of the American Statistical Association.