Abel-Rothe Type Generalizations of Jacobi's Triple Product Identity

Using a simple classical method we derive bilateral series identities from terminating ones. In particular, we show how to deduce Ramanujan's 1ψ1 summation from the q-Pfaff-Saalschutz summation. Further, we apply the same method to our previous q-Abel-Rothe summation to obtain, for the first time, Abel-Rothe type generalizations of Jacobi's triple product identity. We also give some results for multiple series.

[1]  S. Milne,et al.  A New $A_n$ Extension of Ramanujan's ${}_1\psi_1$ Summation with Applications to Multilateral An Series , 2000, math/0010162.

[2]  Gaurav Bhatnagar,et al.  Generalized Bibasic Hypergeometric Series and TheirU(n) Extensions , 1997 .

[3]  Benjamin Weiss,et al.  A SIMPLE PROOF OF , 1982 .

[4]  Volker Strehl Identities of Rothe-Abel- Schläfli-Hurwitz-type , 1992, Discret. Math..

[5]  Helly Aufgaben und Lehrsätze aus der Analysis , 1928 .

[6]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[7]  Stephen C. Milne,et al.  Balanced3ϕ2Summation Theorems forU(n) Basic Hypergeometric Series , 1997 .

[8]  G. Pólya,et al.  Aufgaben und Lehrsätze aus der Analysis , 1926, Mathematical Gazette.

[9]  H. W. Gould,et al.  Some Generalizations of Vandermonde's Convolution , 1956 .

[10]  F. H. Jackson Aq-generalization of abeĽs series , 1910 .

[11]  M. Schlosser Some New Applications of Matrix Inversions in Ar , 1999 .

[12]  B. Dwork Generalized Hypergeometric Functions , 1990 .

[13]  G. M. An Introduction to the Theory of Infinite Series , 1908, Nature.

[14]  Mizan Rahman,et al.  Basic Hypergeometric Series , 1990 .

[15]  H. Rosengren Reduction Formulas for Karlsson–Minton-Type Hypergeometric Functions , 2002, math/0202232.

[16]  C. Jacobi,et al.  Fundamenta nova theoriae functionum ellipticarum , 1829 .

[17]  T. Koornwinder,et al.  BASIC HYPERGEOMETRIC SERIES (Encyclopedia of Mathematics and its Applications) , 1991 .

[18]  S. Milne An elementary proof of the Macdonald identities for , 1985 .

[19]  André Weil,et al.  Elliptic Functions according to Eisenstein and Kronecker , 1976 .

[20]  A New Multidimensional Matrix Inversion in , 2000 .

[21]  N. H. Abel Beweis eines Ausdruckes, von welchem die Binomial-Formel ein einzelner Fall ist. , 1826 .

[22]  H. W. Gould,et al.  Final Analysis of Vandermonde's Convolution , 1957 .

[23]  Wolfgang Hahn,et al.  Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der hypergeometrischen q‐Differenzengleichung. Das q‐Analogon der Laplace‐Transformation , 1949 .

[24]  W. N. Bailey ON THE BASIC BILATERAL HYPERGEOMETRIC SERIES 2 ψ 2 , 1950 .

[25]  Michael J. Schlosser,et al.  A new multidimensional matrix inverse with applications to multiple q-series , 1999, Discret. Math..

[26]  P. W. Karlsson,et al.  Multiple Gaussian hypergeometric series , 1985 .

[27]  M. Jackson,et al.  On Lerch's Transcendant and the Basic Bilateral Hypergeometric Series 2ψ2 , 1950 .

[28]  R. Askey,et al.  MULTIPLE GAUSSIAN HYPERGEOMETRIC SERIES (Ellis Horwood Series Mathematics and Its Applications) , 1986 .

[29]  J. Horn,et al.  Ueber die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen , 1889 .

[30]  George E. Andrews,et al.  Applications of Basic Hypergeometric Functions , 1974 .

[31]  G. Pólya,et al.  Aufgaben und Lehrsätze aus der Analysis: Erster Band: Reihen · Integralrechnung Funktionentheorie , 1925 .

[32]  Michael J. Schlosser,et al.  Multidimensional Matrix Inversions and Ar and Dr Basic Hypergeometric Series , 1997 .

[33]  Mourad E. H. Ismail,et al.  Shorter Notes: A Simple Proof of Ramanujan's 1 Ψ 1 Sum , 1977 .

[34]  G. Bhatnagar,et al.  Cn and Dn Very-Well-Poised 10φ9 Transformations , 1998 .

[35]  W. N. Bailey SERIES OF HYPERGEOMETRIC TYPE WHICH ARE INFINITE IN BOTH DIRECTIONS , 1936 .

[36]  Warren P. Johnson q-Extensions of identities of Abel-Rothe type , 1996, Discret. Math..