Abel-Rothe Type Generalizations of Jacobi's Triple Product Identity
暂无分享,去创建一个
[1] S. Milne,et al. A New $A_n$ Extension of Ramanujan's ${}_1\psi_1$ Summation with Applications to Multilateral An Series , 2000, math/0010162.
[2] Gaurav Bhatnagar,et al. Generalized Bibasic Hypergeometric Series and TheirU(n) Extensions , 1997 .
[3] Benjamin Weiss,et al. A SIMPLE PROOF OF , 1982 .
[4] Volker Strehl. Identities of Rothe-Abel- Schläfli-Hurwitz-type , 1992, Discret. Math..
[5] Helly. Aufgaben und Lehrsätze aus der Analysis , 1928 .
[6] Gilbert Labelle,et al. Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.
[7] Stephen C. Milne,et al. Balanced3ϕ2Summation Theorems forU(n) Basic Hypergeometric Series , 1997 .
[8] G. Pólya,et al. Aufgaben und Lehrsätze aus der Analysis , 1926, Mathematical Gazette.
[9] H. W. Gould,et al. Some Generalizations of Vandermonde's Convolution , 1956 .
[10] F. H. Jackson. Aq-generalization of abeĽs series , 1910 .
[11] M. Schlosser. Some New Applications of Matrix Inversions in Ar , 1999 .
[12] B. Dwork. Generalized Hypergeometric Functions , 1990 .
[13] G. M.. An Introduction to the Theory of Infinite Series , 1908, Nature.
[14] Mizan Rahman,et al. Basic Hypergeometric Series , 1990 .
[15] H. Rosengren. Reduction Formulas for Karlsson–Minton-Type Hypergeometric Functions , 2002, math/0202232.
[16] C. Jacobi,et al. Fundamenta nova theoriae functionum ellipticarum , 1829 .
[17] T. Koornwinder,et al. BASIC HYPERGEOMETRIC SERIES (Encyclopedia of Mathematics and its Applications) , 1991 .
[18] S. Milne. An elementary proof of the Macdonald identities for , 1985 .
[19] André Weil,et al. Elliptic Functions according to Eisenstein and Kronecker , 1976 .
[20] A New Multidimensional Matrix Inversion in , 2000 .
[21] N. H. Abel. Beweis eines Ausdruckes, von welchem die Binomial-Formel ein einzelner Fall ist. , 1826 .
[22] H. W. Gould,et al. Final Analysis of Vandermonde's Convolution , 1957 .
[23] Wolfgang Hahn,et al. Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der hypergeometrischen q‐Differenzengleichung. Das q‐Analogon der Laplace‐Transformation , 1949 .
[24] W. N. Bailey. ON THE BASIC BILATERAL HYPERGEOMETRIC SERIES 2 ψ 2 , 1950 .
[25] Michael J. Schlosser,et al. A new multidimensional matrix inverse with applications to multiple q-series , 1999, Discret. Math..
[26] P. W. Karlsson,et al. Multiple Gaussian hypergeometric series , 1985 .
[27] M. Jackson,et al. On Lerch's Transcendant and the Basic Bilateral Hypergeometric Series 2ψ2 , 1950 .
[28] R. Askey,et al. MULTIPLE GAUSSIAN HYPERGEOMETRIC SERIES (Ellis Horwood Series Mathematics and Its Applications) , 1986 .
[29] J. Horn,et al. Ueber die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen , 1889 .
[30] George E. Andrews,et al. Applications of Basic Hypergeometric Functions , 1974 .
[31] G. Pólya,et al. Aufgaben und Lehrsätze aus der Analysis: Erster Band: Reihen · Integralrechnung Funktionentheorie , 1925 .
[32] Michael J. Schlosser,et al. Multidimensional Matrix Inversions and Ar and Dr Basic Hypergeometric Series , 1997 .
[33] Mourad E. H. Ismail,et al. Shorter Notes: A Simple Proof of Ramanujan's 1 Ψ 1 Sum , 1977 .
[34] G. Bhatnagar,et al. Cn and Dn Very-Well-Poised 10φ9 Transformations , 1998 .
[35] W. N. Bailey. SERIES OF HYPERGEOMETRIC TYPE WHICH ARE INFINITE IN BOTH DIRECTIONS , 1936 .
[36] Warren P. Johnson. q-Extensions of identities of Abel-Rothe type , 1996, Discret. Math..