Breaking the light speed barrier

As it is well known, classical special relativity allows the existence of three different kinds of particles: bradyons, luxons and tachyons. Bradyons have non-zero mass and hence always travel slower than light. Luxons are particles with zero mass, like the photon, and they always travel with invariant velocity. Tachyons are hypothetical superluminal particles that always move faster than light. The existence of bradyons and luxons is firmly established, while the tachyons were never reliably observed. In quantum field theory, the appearance of tachyonic degrees of freedom indicates vacuum instability rather than a real existence of the faster-than-light particles. However, recent controversial claims of the OPERA experiment about superluminal neutrinos triggered a renewed interest in superluminal particles. Driven by a striking analogy of the old Frenkel-Kontorova model of a dislocation dynamics to the theory of relativity, we conjecture in this note a remarkable possibility of existence of the forth type of particles, elvisebrions, which can be superluminal. The characteristic feature of elvisebrions, distinguishing them from tachyons, is that they are outside the realm of special relativity and their energy remains finite (or may even turn to zero) when the elvisebrion velocity approaches the light velocity.

[1]  M. Wadati,et al.  A Soliton and Two Solitons in an Exponential Lattice and Related Equations , 1973 .

[2]  Strings, black holes, and Lorentz contraction. , 1993, Physical review. D, Particles and fields.

[3]  G. Giudice Naturally Speaking: The Naturalness Criterion and Physics at the LHC , 2008, 0801.2562.

[4]  S. Horvath,et al.  Amplitudes for space-like separations and causality , 2011, 1110.1162.

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  J. Moffat Bimetric Relativity and the Opera Neutrino Experiment , 2011, 1110.1330.

[7]  S. Glashow,et al.  Pair creation constrains superluminal neutrino propagation. , 2011, Physical review letters.

[8]  C. Pfeifer,et al.  Beyond the speed of light on Finsler spacetimes , 2011, 1109.6005.

[9]  Yakir Aharonov,et al.  Superluminal Behavior, Causality, and Instability , 1969 .

[10]  R. Geroch,et al.  Faster Than Light , 2010, 1005.1614.

[11]  L. Gonzalez-Mestres Comments on the recent result of the "Measurement of the neutrino velocity with the OPERA detector in the CNGS beam" , 2011, 1109.6308.

[12]  A. Strumia,et al.  Interpreting OPERA results on superluminal neutrino , 2011, 1109.5682.

[13]  Chuan-Sheng Liu,et al.  Bäcklund transformation solutions of the Toda lattice equation , 1975 .

[14]  Yuri S. Kivshar,et al.  The Frenkel-Kontorova Model: Concepts, Methods, and Applications , 2004 .

[15]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[16]  F. Klinkhamer Superluminal muon-neutrino velocity from a Fermi-point-splitting model of Lorentz violation , 2011, 1109.5671.

[17]  D. D'Armiento,et al.  Inconsistency in super-luminal CERN–OPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass , 2011, 1109.5368.

[18]  M. Wadati,et al.  Bäcklund Transformation for the Exponential Lattice , 1975 .

[19]  Steven Weinberg,et al.  Field Theory for Today. (Book Reviews: The Quantum Theory of Fields. Volume 1, Foundations) , 1995 .

[20]  F. Frank,et al.  One-dimensional dislocations IV. Dynamics , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  Alvaro H. Salas,et al.  Exact solutions of coupled sine–Gordon equations , 2010 .

[22]  L. Manevich,et al.  Classical mechanical analogs of relativistic effects , 2004 .

[23]  G. Dvali,et al.  Price for environmental neutrino-superluminality , 2011, 1109.5685.

[24]  M. Strikman,et al.  On the shape of a rapid hadron in QCD , 2008, 0811.3737.

[25]  Yuan Zhong Zhang,et al.  SPECIAL RELATIVITY AND ITS EXPERIMENTAL FOUNDATION , 1997 .

[26]  H. Bergeron About Statistical Questions Involved in the Data Analysis of the OPERA Experiment , 2011, 1110.5275.

[27]  J. Butterfield Reconsidering Relativistic Causality , 2007, 0708.2189.

[28]  R. Garattini,et al.  Particle propagation and effective space-time in Gravity's Rainbow , 2011, 1109.6563.

[29]  Modular localization and wigner particles , 2002, math-ph/0203021.

[30]  G. Volovik,et al.  The Universe in a Helium Droplet , 2003 .

[31]  B. Altschul Laboratory bounds on electron Lorentz violation , 2010, 1005.2994.

[32]  A. Peters,et al.  Rotating optical cavity experiment testing Lorentz invariance at the 10-17 level , 2009, 1002.1284.

[33]  J. Swain Particles, Fields, Pomerons and Beyond , 2011, 1110.5087.

[34]  H. Nielsen,et al.  GRAVITY AND MIRROR GRAVITY IN PLEBANSKI FORMULATION , 2012, 1206.3497.

[35]  V. Tioukov,et al.  Measurement of the neutrino velocity with the OPERA detector in the CNGS beam , 2011, 1109.4897.

[36]  N. Straumann Unitary Representations of the inhomogeneous Lorentz Group and their Significance in Quantum Physics , 2008, 0809.4942.

[37]  A R Bishop,et al.  Continuum approach to discreteness. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[39]  L. Gonzalez-Mestres Astrophysical consequences of the OPERA superluminal neutrino , 2011, 1109.6630.

[40]  S. Weinberg The Quantum Theory of Fields: THE CLUSTER DECOMPOSITION PRINCIPLE , 1995 .

[41]  Hartmut Wittig,et al.  An Introduction to Quantum Field Theory , 2003 .

[42]  Superfluid analogies of cosmological phenomena , 2000, gr-qc/0005091.

[43]  Continuous spin representations from group contraction , 2004, hep-th/0410107.

[44]  Wolfgang K. Schief,et al.  Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory , 2002 .

[45]  Radiation from a superluminal source , 1997, physics/0003053.

[46]  M. Chiara Italian Studies in the Philosophy of Science , 1981 .

[47]  T. Morris Off-shell OPERA neutrinos , 2011, 1110.3266.

[48]  Andrew G. Glen,et al.  APPL , 2001 .

[49]  X. Bekaert,et al.  The unitary representations of the Poincar\'e group in any spacetime dimension , 2006, hep-th/0611263.

[50]  Thoughts on tachyon cosmology , 2003, hep-th/0301117.

[51]  E. Ben-Jacob,et al.  Sine-Gordon solitons: Particles obeying relativistic dynamics , 1983 .

[52]  Wesley C. Salmon,et al.  Causality and Explanation , 1998 .

[53]  C. Ross Found , 1869, The Dental register.

[54]  David Mattingly,et al.  Modern Tests of Lorentz Invariance , 2005, Living reviews in relativity.

[55]  D. Salgado,et al.  Quantum Mechanics, is it magic? , 2008, 0804.4216.

[56]  F. Klinkhamer,et al.  Superluminal neutrino and spontaneous breaking of Lorentz invariance , 2011, 1109.6624.

[57]  Living in the Multiverse , 2005, hep-th/0511037.

[58]  A. Kovalev,et al.  The supersonic motion of a crowdion. The one-dimensional model with nonlinear interaction between the nearest neighbours , 1973 .

[59]  Yuri S. Kivshar,et al.  The Frenkel-Kontorova Model , 2004 .

[60]  Instantaneous Spreading and Einstein Causality in Quantum Theory , 1998, quant-ph/9809030.

[61]  E. Sudarshan Happy recollections of five decades in physics , 2009 .