In vivo Quantification of Monoamine Oxidase A in Baboon Brain: A PET Study Using [11C]befloxatone and the Multi-Injection Approach

[1]  Philippe Hantraye,et al.  Positron Emission Tomography Imaging Demonstrates Correlation between Behavioral Recovery and Correction of Dopamine Neurotransmission after Gene Therapy , 2009, The Journal of Neuroscience.

[2]  M. Grégoire,et al.  Cerebral Monoamine Oxidase A Inhibition in Tobacco Smokers Confirmed With PET and [11C]Befloxatone , 2009, Journal of clinical psychopharmacology.

[3]  P. Cumming,et al.  Synthesis and cerebral uptake of 1-(1-[(11)C]methyl-1H-pyrrol-2-yl)-2-phenyl-2-(1-pyrrolidinyl)ethanone, a novel tracer for positron emission tomography studies of monoamine oxidase type A. , 2008, Journal of medicinal chemistry.

[4]  Jean-Dominique Gallezot,et al.  Quantification of Cerebral Nicotinic Acetylcholine Receptors by PET Using 2-[18F]Fluoro-A-85380 and the Multiinjection Approach , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  L. Parsons,et al.  Monoamine oxidase A rather than monoamine oxidase B inhibition increases nicotine reinforcement in rats , 2006, The European journal of neuroscience.

[6]  Sylvain Houle,et al.  Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. , 2006, Archives of general psychiatry.

[7]  J. V. van Amsterdam,et al.  Contribution of monoamine oxidase (MAO) inhibition to tobacco and alcohol addiction. , 2006, Life sciences.

[8]  J. Belluzzi,et al.  Monoamine Oxidase Inhibitors Allow Locomotor and Rewarding Responses to Nicotine , 2006, Neuropsychopharmacology.

[9]  Paul Cumming,et al.  Effect of monoamine oxidase inhibition on amphetamine‐evoked changes in dopamine receptor availability in the living pig: A dual tracer PET study with [11C]harmine and [11C]raclopride , 2006, Synapse.

[10]  Sylvain Houle,et al.  Positron Emission Tomography Quantification of [11C]-Harmine Binding to Monoamine Oxidase-A in the Human Brain , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[11]  N. Volkow,et al.  Translational Neuroimaging: Positron Emission Tomography Studies of Monoamine Oxidase , 2005, Molecular Imaging and Biology.

[12]  C. Lartizien,et al.  Synthesis and in vivo imaging properties of [11C]befloxatone: a novel highly potent positron emission tomography ligand for mono-amine oxidase-A. , 2003, Bioorganic & medicinal chemistry letters.

[13]  O. Curet,et al.  Mapping the Cerebral Monoamine Oxidase Type A: Positron Emission Tomography Characterization of the Reversible Selective Inhibitor [11C]Befloxatone , 2003, Journal of Pharmacology and Experimental Therapeutics.

[14]  N. Volkow,et al.  Strategy for the Formation of Parametric Images under Conditions of Low Injected Radioactivity Applied to PET Studies with the Irreversible Monoamine Oxidase a Tracers [11C]Clorgyline and Deuterium-Substituted [11C]Clorgyline , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  J. Delforge,et al.  Parametric Images of the Extrastriatal D2 Receptor Density Obtained Using a High-Affinity Ligand (FLB 457) and a Double-Saturation Method , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[16]  J Delforge,et al.  Absolute Quantification by Positron Emission Tomography of the Endogenous Ligand , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[17]  P. Rosenzweig,et al.  Clinical pharmacology of befloxatone: a brief review. , 1998, Journal of affective disorders.

[18]  J. Wouters,et al.  Structural aspects of monoamine oxidase and its reversible inhibition. , 1998, Current medicinal chemistry.

[19]  M. Bergström,et al.  Synthesis of some 11C-labelled MAO-A inhibitors and their in vivo uptake kinetics in rhesus monkey brain. , 1997, Nuclear medicine and biology.

[20]  M. Bergström,et al.  11C-harmine as a tracer for monoamine oxidase A (MAO-A): in vitro and in vivo studies. , 1997, Nuclear medicine and biology.

[21]  J. Delforge,et al.  Parametric Images of Benzodiazepine Receptor Concentration Using a Partial-Saturation Injection , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[22]  O. Curet,et al.  THE DRAMBALLET STUDIO , 1996 .

[23]  H. Livingston,et al.  Monoamine Oxidase Inhibitors , 1996 .

[24]  K. Leenders,et al.  Radiosynthesis of [11C]brofaromine, a potential tracer for imaging monoamine oxidase A. , 1996, Nuclear medicine and biology.

[25]  P. Malherbe,et al.  Molecular neuroanatomy of human monoamine oxidases A and B revealed by quantitative enzyme radioautography and in situ hybridization histochemistry , 1996, Neuroscience.

[26]  P. Merlet,et al.  Quantification of myocardial muscarinic receptors with PET in humans. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[27]  R. Frackowiak,et al.  Measurement of Cerebral Monoamine Oxidase B Activity Using L-[11C]Deprenyl and Dynamic Positron Emission Tomography , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[28]  M. Bös,et al.  Characterization of the binding of [3H]Ro 41-1049 to the active site of human monoamine oxidase-A. , 1990, Molecular pharmacology.

[29]  K. Tipton,et al.  Determination of the absolute concentrations of monoamine oxidase A and B in human tissues. , 1989, Biochemical pharmacology.

[30]  C. D. Arnett,et al.  Mapping human brain monoamine oxidase A and B with 11C-labeled suicide inactivators and PET. , 1987, Science.

[31]  M E Phelps,et al.  Neuroreceptor Assay with Positron Emission Tomography: Equilibrium versus Dynamic Approaches , 1986, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[32]  M. Mintun,et al.  A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography , 1984, Annals of neurology.

[33]  K. Tipton,et al.  The deamination of dopamine by human brain monoamine oxidase , 1983, Naunyn-Schmiedeberg's Archives of Pharmacology.

[34]  R. Lea,et al.  Monoamine oxidase and tobacco dependence. , 2007, Neurotoxicology.

[35]  P. Cumming,et al.  Effects of monoamine inhibition on amphetamine-evoked changes in dopamine receptor availability in living pig: A dual tracer PET study with 11C-harmine and 11C-raclopride , 2006 .

[36]  Karmen K. Yoder,et al.  Estimation of local receptor density, B'max, and other parameters via multiple-injection positron emission tomography experiments. , 2004, Methods in enzymology.

[37]  J. Shih,et al.  Monoamine oxidase: from genes to behavior. , 1999, Annual review of neuroscience.

[38]  O. Curet,et al.  Befloxatone, a new reversible and selective monoamine oxidase-A inhibitor. I. Biochemical profile. , 1996, The Journal of pharmacology and experimental therapeutics.

[39]  J Delforge,et al.  Concept of reaction volume in the in vivo ligand-receptor model. , 1996, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[40]  A. Boulton,et al.  Neuronal and astroglial monoamine oxidase: pharmacological implications of specific MAO-B inhibitors. , 1992, Progress in brain research.