Fast molecular outflow from a dusty star-forming galaxy in the early Universe

Molecular gas ejected from a distant galaxy Galaxies grow by forming stars from cold molecular gas. The rate at which they do so is limited by various feedback processes (such as supernovae or stellar winds) that heat and/or eject gas from the host galaxy. Spilker et al. used submillimeter observations to discover an outflow of molecular gas from a galaxy in the early Universe, a period of vigorous star formation. Modeling the outflow revealed that the mass of gas being ejected is similar to that being turned into stars. The results will help determine how quickly galaxies formed after the Big Bang. Science, this issue p. 1016 A galaxy in the early Universe is driving an outflow of molecular gas, a sign of feedback regulating star formation. Galaxies grow inefficiently, with only a small percentage of the available gas converted into stars each free-fall time. Feedback processes, such as outflowing winds driven by radiation pressure, supernovae, or supermassive black hole accretion, can act to halt star formation if they heat or expel the gas supply. We report a molecular outflow launched from a dust-rich star-forming galaxy at redshift 5.3, 1 billion years after the Big Bang. The outflow reaches velocities up to 800 kilometers per second relative to the galaxy, is resolved into multiple clumps, and carries mass at a rate within a factor of 2 of the star formation rate. Our results show that molecular outflows can remove a large fraction of the gas available for star formation from galaxies at high redshift.

[1]  W. Everett,et al.  THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES FROM THE SPT SURVEY , 2016, 1603.05094.

[2]  T. Yuan,et al.  A massive, quiescent galaxy at a redshift of 3.717 , 2017, Nature.

[3]  T. Treu,et al.  Massive Dark Matter Halos and Evolution of Early-Type Galaxies to z ≈ 1 , 2004, astro-ph/0401373.

[4]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[5]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[6]  J. Carlstrom,et al.  ALMA IMAGING AND GRAVITATIONAL LENS MODELS OF SOUTH POLE TELESCOPE—SELECTED DUSTY, STAR-FORMING GALAXIES AT HIGH REDSHIFTS , 2016, 1604.05723.

[7]  P. Martini,et al.  THE MULTI-PHASE COLD FOUNTAIN IN M82 REVEALED BY A WIDE, SENSITIVE MAP OF THE MOLECULAR INTERSTELLAR MEDIUM , 2015 .

[8]  A. M. Swinbank,et al.  A survey of molecular gas in luminous sub-millimetre galaxies , 2012, 1205.1511.

[9]  P. Hopkins,et al.  The formation of submillimetre-bright galaxies from gas infall over a billion years , 2015, Nature.

[10]  A. Stark,et al.  A survey of the cold molecular gas in gravitationally lensed star-forming galaxies at z > 2 , 2016, 1602.00652.

[11]  P. Hopkins,et al.  Gusty, gaseous flows of FIRE: Galactic winds in cosmological simulations with explicit stellar feedback , 2015, 1501.03155.

[12]  S. Veilleux,et al.  MASSIVE MOLECULAR OUTFLOWS AND NEGATIVE FEEDBACK IN ULIRGs OBSERVED BY HERSCHEL-PACS , 2011, 1105.1731.

[13]  A. Bolton,et al.  THE STRUCTURE AND DYNAMICS OF MASSIVE EARLY-TYPE GALAXIES: ON HOMOLOGY, ISOTHERMALITY, AND ISOTROPY INSIDE ONE EFFECTIVE RADIUS , 2009, 0906.1349.

[14]  J. Carlstrom,et al.  THE REST-FRAME SUBMILLIMETER SPECTRUM OF HIGH-REDSHIFT, DUSTY, STAR-FORMING GALAXIES , 2014, 1403.1667.

[15]  S. Veilleux,et al.  The Mrk 231 molecular outflow as seen in OH , 2013, 1310.3074.

[16]  Holger S. P. Müller,et al.  THE COLOGNE DATABASE FOR MOLECULAR SPECTROSCOPY, CDMS , 2001 .

[17]  S. E. Persson,et al.  A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT z ∼ 4 FROM ZFOURGE , 2013, 1312.4952.

[18]  S. Warren,et al.  Semilinear Gravitational Lens Inversion , 2003, astro-ph/0302587.

[19]  Andrew C. Fabian,et al.  Observational Evidence of Active Galactic Nuclei Feedback , 2012 .

[20]  D. L. Clements,et al.  HERSCHEL-ATLAS: A BINARY HyLIRG PINPOINTING A CLUSTER OF STARBURSTING PROTOELLIPTICALS , 2013, 1302.4436.

[21]  Wenlei Shan,et al.  A Submillimeter Cartridge-Type Receiver: ALMA Band 8 (385-500 GHz) Qualification Model , 2008 .

[22]  A. J. Richings,et al.  The origin of fast molecular outflows in quasars: Molecule formation in AGN-driven galactic winds , 2017, 1706.03784.

[23]  Adrian T. Lee,et al.  ALMA REDSHIFTS OF MILLIMETER-SELECTED GALAXIES FROM THE SPT SURVEY: THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES , 2013, 1303.2726.

[24]  S. Veilleux,et al.  Massive molecular outflows and evidence for AGN feedback from CO observations , 2013, 1311.2595.

[25]  I. Smail,et al.  Clustering of submillimeter-selected galaxies , 2004, astro-ph/0405035.

[26]  A. M. Swinbank,et al.  A Spatially Resolved Study of Cold Dust, Molecular Gas, H ii Regions, and Stars in the z = 2.12 Submillimeter Galaxy ALESS67.1 , 2017, 1708.08937.

[27]  S. Veilleux,et al.  Molecular Outflows in Local ULIRGs: Energetics from Multitransition OH Analysis , 2016, 1612.08181.

[28]  Adrian T. Lee,et al.  ALMA OBSERVATIONS OF SPT-DISCOVERED, STRONGLY LENSED, DUSTY, STAR-FORMING GALAXIES , 2013, 1303.2722.

[29]  C. C. Chen,et al.  KILOPARSEC-SCALE DUST DISKS IN HIGH-REDSHIFT LUMINOUS SUBMILLIMETER GALAXIES , 2016, The Astrophysical Journal.

[30]  A. Bolton,et al.  The Sloan Lens ACS Survey. III. The Structure and Formation of Early-Type Galaxies and Their Evolution since z ≈ 1 , 2006, astro-ph/0601628.

[31]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.

[32]  K. Alatalo ESCAPE, ACCRETION, OR STAR FORMATION? THE COMPETING DEPLETERS OF GAS IN THE QUASAR MARKARIAN 231 , 2015, 1502.00624.

[33]  Spain.,et al.  Star formation and dust attenuation properties in galaxies from a statistical ultraviolet‐to‐far‐infrared analysis , 2005, astro-ph/0504434.

[34]  S. Veilleux,et al.  FAST MOLECULAR OUTFLOWS IN LUMINOUS GALAXY MERGERS: EVIDENCE FOR QUASAR FEEDBACK FROM HERSCHEL , 2013, 1308.3139.

[35]  Holger S. P. Müller,et al.  The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists , 2005 .

[36]  S. Meyer,et al.  Dusty starburst galaxies in the early Universe as revealed by gravitational lensing , 2013, Nature.

[37]  E. Pellegrini,et al.  THE CO-TO-H2 CONVERSION FACTOR AND DUST-TO-GAS RATIO ON KILOPARSEC SCALES IN NEARBY GALAXIES , 2012, 1212.1208.

[38]  J. Goicoechea,et al.  Far-Infrared OH Fluorescent Emission in Sagittarius B2 , 2002, astro-ph/0207498.

[39]  N. Evans,et al.  Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.

[40]  P. Hopkins,et al.  How Stellar Feedback Simultaneously Regulates Star Formation and Drives Outflows , 2015, 1510.05650.

[41]  J. Black,et al.  An atomic and molecular database for analysis of submillimetre line observations , 2004, astro-ph/0411110.

[42]  H. Müller,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.

[43]  Adrian T. Lee,et al.  EXTRAGALACTIC MILLIMETER-WAVE SOURCES IN SOUTH POLE TELESCOPE SURVEY DATA: SOURCE COUNTS, CATALOG, AND STATISTICS FOR AN 87 SQUARE-DEGREE FIELD , 2009, 0912.2338.

[44]  B. Robertson,et al.  HYDRODYNAMICAL COUPLING OF MASS AND MOMENTUM IN MULTIPHASE GALACTIC WINDS , 2016, 1607.01788.

[45]  J. Bernard-Salas,et al.  DIAGNOSTICS OF AGN-DRIVEN MOLECULAR OUTFLOWS IN ULIRGs FROM HERSCHEL-PACS OBSERVATIONS OF OH AT 119 μm , 2013, 1307.6224.

[46]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[47]  A. Dekel,et al.  Gas inflow and metallicity drops in star-forming galaxies , 2015, 1509.02051.

[48]  J. Mangum,et al.  How to Calculate Molecular Column Density , 2015, 1501.01703.

[49]  E. Quataert,et al.  On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds , 2004, astro-ph/0406070.

[50]  J. Carlstrom,et al.  SUB-KILOPARSEC IMAGING OF COOL MOLECULAR GAS IN TWO STRONGLY LENSED DUSTY, STAR-FORMING GALAXIES , 2015, 1508.07369.

[51]  Adrian T. Lee,et al.  EXTRAGALACTIC MILLIMETER-WAVE POINT-SOURCE CATALOG, NUMBER COUNTS AND STATISTICS FROM 771 deg2 OF THE SPT-SZ SURVEY , 2013, 1306.3470.

[52]  S. Veilleux,et al.  Galactic Winds , 2005, astro-ph/0504435.

[53]  M. Bartelmann,et al.  Isothermal elliptical gravitational lens models. , 1994 .

[54]  John E. Carlstrom,et al.  DETECTION OF LENSING SUBSTRUCTURE USING ALMA OBSERVATIONS OF THE DUSTY GALAXY SDP.81 , 2016, 1601.01388.

[55]  Institute for Astronomy,et al.  Outflows in Infrared-Luminous Starbursts at z < 0.5. II. Analysis and Discussion , 2005, astro-ph/0506611.

[56]  Cambridge,et al.  A Bayesian analysis of regularized source inversions in gravitational lensing , 2006, astro-ph/0601493.

[57]  V. Buat,et al.  Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample , 2009, 0909.5439.

[58]  A. Cimatti,et al.  Submillimeter Galaxies at z ~ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and CO-H2 Conversion Factor , 2008, 0801.3650.