Robustified estimation algorithms for mobile robot localization based on geometrical environment maps
暂无分享,去创建一个
[1] Geovany de Araújo Borges,et al. Optimal mobile robot pose estimation using geometrical maps , 2002, IEEE Trans. Robotics Autom..
[2] Rajesh P. N. Rao,et al. An optimal estimation approach to visual perception and learning , 1999, Vision Research.
[3] Wolfram Burgard,et al. Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).
[4] Lindsay Kleeman,et al. Optimal estimation of position and heading for mobile robots using ultrasonic beacons and dead-reckoning , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.
[5] Wolfram Burgard,et al. An experimental comparison of localization methods , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).
[6] Robert M. Haralick,et al. Propagating covariance in computer vision , 1994, Proceedings of 12th International Conference on Pattern Recognition.
[7] Wolfram Burgard,et al. Fast Grid-Based Position TRacking for Mobile Robots , 1997, KI.
[8] Hans P. Moravec,et al. High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.
[9] Xinhua Zhuang,et al. Pose estimation from corresponding point data , 1989, IEEE Trans. Syst. Man Cybern..
[10] Geovany de Araújo Borges,et al. A decoupled approach for simultaneous stochastic mapping and mobile robot localization , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.
[11] Wolfram Burgard,et al. Experiences with an Interactive Museum Tour-Guide Robot , 1999, Artif. Intell..
[12] Lindsay Kleeman,et al. Accurate odometry and error modelling for a mobile robot , 1997, Proceedings of International Conference on Robotics and Automation.
[13] Michael R. M. Jenkin,et al. Global navigation for ARK , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).
[14] Johann Borenstein,et al. Accurate mobile robot dead-reckoning with a precision-calibrated fiber-optic gyroscope , 2001, IEEE Trans. Robotics Autom..
[15] Hugh F. Durrant-Whyte,et al. Position estimation and tracking using optical range data , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).
[16] G. Alistair Watson,et al. Fitting Data with Errors in All Variables Using the Huber M-estimator , 1999, SIAM J. Sci. Comput..
[17] Marilena Vendittelli,et al. Real-time map building and navigation for autonomous robots in unknown environments , 1998, IEEE Trans. Syst. Man Cybern. Part B.
[18] Giuseppe Oriolo,et al. Robot localization in nonsmooth environments: experiments with a new filtering technique , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).
[19] J. M. M. Montiel,et al. Continuous mobile robot localization: vision vs. laser , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).
[20] Nicola Tomatis,et al. Improving robustness and precision in mobile robot localization by using laser range finding and monocular vision , 1999, 1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355).
[21] Wolfram Burgard,et al. Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..
[22] Benjamin Kuipers,et al. The Cognitive Map: Could It Have Been Any Other Way? , 1983 .
[23] Hugh F. Durrant-Whyte,et al. A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..
[24] Patric Jensfelt,et al. Experiments on augmenting CONDENSATION for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).
[25] Ulrich Raschke,et al. A comparison of grid-type map-building techniques by index of performance , 1990, Proceedings., IEEE International Conference on Robotics and Automation.
[26] Konstantinos N. Plataniotis,et al. Nonlinear Filtering of Non-Gaussian Noise , 1997, J. Intell. Robotic Syst..
[27] Hichem Frigui,et al. A Robust Competitive Clustering Algorithm With Applications in Computer Vision , 1999, IEEE Trans. Pattern Anal. Mach. Intell..
[28] Gaurav S. Sukhatme,et al. Robust localization using relative and absolute position estimates , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).
[29] M. Isabel Ribeiro,et al. Active range sensing for mobile robot localization , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).
[30] Henrik I. Christensen,et al. Pose tracking using laser scanning and minimalistic environmental models , 2001, IEEE Trans. Robotics Autom..
[31] Wolfram Burgard,et al. Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva , 2000, Int. J. Robotics Res..
[32] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .
[33] Wolfram Burgard,et al. Probabilistic mapping of an environment by a mobile robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).
[34] Bernt Schiele,et al. A comparison of position estimation techniques using occupancy grids , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.
[35] Xun Xu,et al. Application of extended covariance intersection principle for mosaic-based optical positioning and navigation of underwater vehicles , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).
[36] Jong Hwan Lim,et al. Mobile Robot Relocation from Echolocation Constraints , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[37] Jeffrey K. Uhlmann,et al. Nondivergent simultaneous map building and localization using covariance intersection , 1997, Defense, Security, and Sensing.
[38] David R. Musicant,et al. Robust Linear and Support Vector Regression , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[39] Wolfram Burgard,et al. Active Mobile Robot Localization , 1997, IJCAI.
[40] F. W. Cathey,et al. The iterated Kalman filter update as a Gauss-Newton method , 1993, IEEE Trans. Autom. Control..
[41] Ingemar J. Cox,et al. Blanche-an experiment in guidance and navigation of an autonomous robot vehicle , 1991, IEEE Trans. Robotics Autom..
[42] Geovany de Araújo Borges,et al. An optimal pose estimator for map-based mobile robot dynamic localization: experimental comparison with the EKF , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).
[43] Geovany de Araújo Borges,et al. A split-and-merge segmentation algorithm for line extraction in 2D range images , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.
[44] Geovany Araujo Borges. Cartographie de l'environnement et localisation robuste pour la navigation de robots mobiles , 2003 .
[45] Rajesh N. Davé,et al. Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..
[46] David Suter,et al. Data Segmentation and Model Selection for Computer Vision , 1999, Springer New York.
[47] Hugh F. Durrant-Whyte,et al. Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..
[48] Bruno Marhic,et al. Geometrical matching for mobile robot localization , 2000, IEEE Trans. Robotics Autom..
[49] Ewald von Puttkamer,et al. Keeping track of position and orientation of moving indoor systems by correlation of range-finder scans , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).
[50] Hugh F. Durrant-Whyte,et al. Inertial navigation systems for mobile robots , 1995, IEEE Trans. Robotics Autom..
[51] Fan Wang,et al. Robust Kalman filters for linear time-varying systems with stochastic parametric uncertainties , 2002, IEEE Trans. Signal Process..
[52] Bernhard Nebel,et al. Fast, accurate, and robust self-localization in polygonal environments , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).
[53] Liqiang Feng,et al. Navigating Mobile Robots: Systems and Techniques , 1996 .
[54] Wolfram Burgard,et al. Integrating Topological and Metric Maps for Mobile Robot Navigation: A Statistical Approach , 1998, AAAI/IAAI.
[55] Sauro Longhi,et al. Development and experimental validation of an adaptive extended Kalman filter for the localization of mobile robots , 1999, IEEE Trans. Robotics Autom..
[56] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[57] Wolfram Burgard,et al. A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Machine Learning.
[58] Yaakov Bar-Shalom,et al. Estimation and Tracking: Principles, Techniques, and Software , 1993 .
[59] Patric Jensfelt,et al. Feature based CONDENSATION for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).
[60] Wolfram Burgard,et al. Position Estimation for Mobile Robots in Dynamic Environments , 1998, AAAI/IAAI.
[61] Günther Schmidt,et al. Fusing range and intensity images for mobile robot localization , 1999, IEEE Trans. Robotics Autom..
[62] Keiji Nagatani,et al. Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization , 2001, IEEE Trans. Robotics Autom..
[63] Jean-Michel Jolion,et al. Robust Clustering with Applications in Computer Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[64] Patric Jensfelt,et al. Using multiple Gaussian hypotheses to represent probability distributions for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).
[65] Lihua Xie,et al. Design and analysis of discrete-time robust Kalman filters , 2002, Autom..
[66] Gaudenz Danuser,et al. Parametric Model Fitting: From Inlier Characterization to Outlier Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..
[67] Nando de Freitas,et al. The Unscented Particle Filter , 2000, NIPS.
[68] G. Oriolo,et al. Fuzzy Maps: A New Tool for Mobile Robot Perception and Planning , 1997 .
[69] Dimitrios Hatzinakos,et al. An adaptive Gaussian sum algorithm for radar tracking , 1999, Signal Process..
[70] V. Balakrishnan,et al. Robust adaptive Kalman filters for linear time-varying systems with stochastic parametric uncertainties , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).
[71] Peter Cheeseman,et al. A stochastic map for uncertain spatial relationships , 1988 .
[72] Jeffrey K. Uhlmann,et al. A non-divergent estimation algorithm in the presence of unknown correlations , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).
[73] Michael J. Black,et al. On the unification of line processes, outlier rejection, and robust statistics with applications in early vision , 1996, International Journal of Computer Vision.
[74] Roland Siegwart,et al. Multisensor on-the-fly localization: : Precision and reliability for applications , 2001, Robotics Auton. Syst..