Robustified estimation algorithms for mobile robot localization based on geometrical environment maps

Abstract This paper presents an improved weighted least-squares algorithm used for optimal 2D pose estimation of mobile robots navigating in real environments represented by geometrical maps. Following this map representation paradigm, feature matching is an important step in pose estimation. In this process, false feature matches may be accepted as reliable. Thus, in order to provide reliable pose estimation even in the presence of a certain level of false matches, robust M-estimators are derived. We further apply some concepts of outlier rejection for deriving a robust Kalman filter-based pose estimator. Extensive comparisons of the proposed robust methods with classic Kalman filtering-based approaches were carried out in real environments.

[1]  Geovany de Araújo Borges,et al.  Optimal mobile robot pose estimation using geometrical maps , 2002, IEEE Trans. Robotics Autom..

[2]  Rajesh P. N. Rao,et al.  An optimal estimation approach to visual perception and learning , 1999, Vision Research.

[3]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[4]  Lindsay Kleeman,et al.  Optimal estimation of position and heading for mobile robots using ultrasonic beacons and dead-reckoning , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[5]  Wolfram Burgard,et al.  An experimental comparison of localization methods , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[6]  Robert M. Haralick,et al.  Propagating covariance in computer vision , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[7]  Wolfram Burgard,et al.  Fast Grid-Based Position TRacking for Mobile Robots , 1997, KI.

[8]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[9]  Xinhua Zhuang,et al.  Pose estimation from corresponding point data , 1989, IEEE Trans. Syst. Man Cybern..

[10]  Geovany de Araújo Borges,et al.  A decoupled approach for simultaneous stochastic mapping and mobile robot localization , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Wolfram Burgard,et al.  Experiences with an Interactive Museum Tour-Guide Robot , 1999, Artif. Intell..

[12]  Lindsay Kleeman,et al.  Accurate odometry and error modelling for a mobile robot , 1997, Proceedings of International Conference on Robotics and Automation.

[13]  Michael R. M. Jenkin,et al.  Global navigation for ARK , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[14]  Johann Borenstein,et al.  Accurate mobile robot dead-reckoning with a precision-calibrated fiber-optic gyroscope , 2001, IEEE Trans. Robotics Autom..

[15]  Hugh F. Durrant-Whyte,et al.  Position estimation and tracking using optical range data , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[16]  G. Alistair Watson,et al.  Fitting Data with Errors in All Variables Using the Huber M-estimator , 1999, SIAM J. Sci. Comput..

[17]  Marilena Vendittelli,et al.  Real-time map building and navigation for autonomous robots in unknown environments , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[18]  Giuseppe Oriolo,et al.  Robot localization in nonsmooth environments: experiments with a new filtering technique , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[19]  J. M. M. Montiel,et al.  Continuous mobile robot localization: vision vs. laser , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[20]  Nicola Tomatis,et al.  Improving robustness and precision in mobile robot localization by using laser range finding and monocular vision , 1999, 1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355).

[21]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[22]  Benjamin Kuipers,et al.  The Cognitive Map: Could It Have Been Any Other Way? , 1983 .

[23]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[24]  Patric Jensfelt,et al.  Experiments on augmenting CONDENSATION for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[25]  Ulrich Raschke,et al.  A comparison of grid-type map-building techniques by index of performance , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[26]  Konstantinos N. Plataniotis,et al.  Nonlinear Filtering of Non-Gaussian Noise , 1997, J. Intell. Robotic Syst..

[27]  Hichem Frigui,et al.  A Robust Competitive Clustering Algorithm With Applications in Computer Vision , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Gaurav S. Sukhatme,et al.  Robust localization using relative and absolute position estimates , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[29]  M. Isabel Ribeiro,et al.  Active range sensing for mobile robot localization , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[30]  Henrik I. Christensen,et al.  Pose tracking using laser scanning and minimalistic environmental models , 2001, IEEE Trans. Robotics Autom..

[31]  Wolfram Burgard,et al.  Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva , 2000, Int. J. Robotics Res..

[32]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[33]  Wolfram Burgard,et al.  Probabilistic mapping of an environment by a mobile robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[34]  Bernt Schiele,et al.  A comparison of position estimation techniques using occupancy grids , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[35]  Xun Xu,et al.  Application of extended covariance intersection principle for mosaic-based optical positioning and navigation of underwater vehicles , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[36]  Jong Hwan Lim,et al.  Mobile Robot Relocation from Echolocation Constraints , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Jeffrey K. Uhlmann,et al.  Nondivergent simultaneous map building and localization using covariance intersection , 1997, Defense, Security, and Sensing.

[38]  David R. Musicant,et al.  Robust Linear and Support Vector Regression , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Wolfram Burgard,et al.  Active Mobile Robot Localization , 1997, IJCAI.

[40]  F. W. Cathey,et al.  The iterated Kalman filter update as a Gauss-Newton method , 1993, IEEE Trans. Autom. Control..

[41]  Ingemar J. Cox,et al.  Blanche-an experiment in guidance and navigation of an autonomous robot vehicle , 1991, IEEE Trans. Robotics Autom..

[42]  Geovany de Araújo Borges,et al.  An optimal pose estimator for map-based mobile robot dynamic localization: experimental comparison with the EKF , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[43]  Geovany de Araújo Borges,et al.  A split-and-merge segmentation algorithm for line extraction in 2D range images , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[44]  Geovany Araujo Borges Cartographie de l'environnement et localisation robuste pour la navigation de robots mobiles , 2003 .

[45]  Rajesh N. Davé,et al.  Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..

[46]  David Suter,et al.  Data Segmentation and Model Selection for Computer Vision , 1999, Springer New York.

[47]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[48]  Bruno Marhic,et al.  Geometrical matching for mobile robot localization , 2000, IEEE Trans. Robotics Autom..

[49]  Ewald von Puttkamer,et al.  Keeping track of position and orientation of moving indoor systems by correlation of range-finder scans , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[50]  Hugh F. Durrant-Whyte,et al.  Inertial navigation systems for mobile robots , 1995, IEEE Trans. Robotics Autom..

[51]  Fan Wang,et al.  Robust Kalman filters for linear time-varying systems with stochastic parametric uncertainties , 2002, IEEE Trans. Signal Process..

[52]  Bernhard Nebel,et al.  Fast, accurate, and robust self-localization in polygonal environments , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[53]  Liqiang Feng,et al.  Navigating Mobile Robots: Systems and Techniques , 1996 .

[54]  Wolfram Burgard,et al.  Integrating Topological and Metric Maps for Mobile Robot Navigation: A Statistical Approach , 1998, AAAI/IAAI.

[55]  Sauro Longhi,et al.  Development and experimental validation of an adaptive extended Kalman filter for the localization of mobile robots , 1999, IEEE Trans. Robotics Autom..

[56]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[57]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Machine Learning.

[58]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[59]  Patric Jensfelt,et al.  Feature based CONDENSATION for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[60]  Wolfram Burgard,et al.  Position Estimation for Mobile Robots in Dynamic Environments , 1998, AAAI/IAAI.

[61]  Günther Schmidt,et al.  Fusing range and intensity images for mobile robot localization , 1999, IEEE Trans. Robotics Autom..

[62]  Keiji Nagatani,et al.  Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization , 2001, IEEE Trans. Robotics Autom..

[63]  Jean-Michel Jolion,et al.  Robust Clustering with Applications in Computer Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  Patric Jensfelt,et al.  Using multiple Gaussian hypotheses to represent probability distributions for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[65]  Lihua Xie,et al.  Design and analysis of discrete-time robust Kalman filters , 2002, Autom..

[66]  Gaudenz Danuser,et al.  Parametric Model Fitting: From Inlier Characterization to Outlier Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[68]  G. Oriolo,et al.  Fuzzy Maps: A New Tool for Mobile Robot Perception and Planning , 1997 .

[69]  Dimitrios Hatzinakos,et al.  An adaptive Gaussian sum algorithm for radar tracking , 1999, Signal Process..

[70]  V. Balakrishnan,et al.  Robust adaptive Kalman filters for linear time-varying systems with stochastic parametric uncertainties , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[71]  Peter Cheeseman,et al.  A stochastic map for uncertain spatial relationships , 1988 .

[72]  Jeffrey K. Uhlmann,et al.  A non-divergent estimation algorithm in the presence of unknown correlations , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[73]  Michael J. Black,et al.  On the unification of line processes, outlier rejection, and robust statistics with applications in early vision , 1996, International Journal of Computer Vision.

[74]  Roland Siegwart,et al.  Multisensor on-the-fly localization: : Precision and reliability for applications , 2001, Robotics Auton. Syst..