Spin switching in electronic devices based on 2D assemblies of spin-crossover nanoparticles.

Two-dimensional assemblies of triazole-based spin-crossover nanoparticles (SCO NPs) presenting different morphologies are prepared and electrically characterized. The thermal hysteresis loop in the electrical conductance near room temperature correlates with the NP morphologies and their 2D organization. The unprecedentedly large difference - up to two orders of magnitude - in the electrical conductance of the two spin states is of interest for applications.

[1]  Aurelian Rotaru,et al.  Nano‐electromanipulation of Spin Crossover Nanorods: Towards Switchable Nanoelectronic Devices , 2013, Advanced materials.

[2]  A. Urakawa,et al.  Combined, Modulation Enhanced X-ray Powder Diffraction and Raman Spectroscopic Study of Structural Transitions in the Spin Crossover Material [Fe(Htrz)2(trz)](BF4)† , 2011 .

[3]  J. Real,et al.  Thermal, pressure and light switchable spin-crossover materials. , 2005, Dalton transactions.

[4]  L. Manna,et al.  Assembly of colloidal semiconductor nanorods in solution by depletion attraction. , 2010, Nano letters.

[5]  Azzedine Bousseksou,et al.  Towards the ultimate size limit of the memory effect in spin-crossover solids. , 2008, Angewandte Chemie.

[6]  O. Kahn,et al.  Spin-Transition Polymers: From Molecular Materials Toward Memory Devices , 1998 .

[7]  Francesca Matino,et al.  Electron-induced spin crossover of single molecules in a bilayer on gold. , 2012, Angewandte Chemie.

[8]  Jean-François Létard,et al.  Crystal Structures and Spin Crossover in the Polymeric Material [Fe(Htrz)2(trz)](BF4) Including Coherent-Domain Size Reduction Effects , 2013 .

[9]  Aurelian Rotaru,et al.  Dielectric and charge transport properties of the spin crossover complex [Fe(Htrz)2(trz)](BF4) , 2014 .

[10]  Eugenio Coronado,et al.  Tuning size and thermal hysteresis in bistable spin crossover nanoparticles. , 2010, Inorganic chemistry.

[11]  A. Kaiba,et al.  The 1-D polymeric structure of the [Fe(NH2trz)3](NO3)2·nH2O (with n = 2) spin crossover compound proven by single crystal investigations. , 2011, Chemical communications.

[12]  Marinela M. Dîrtu,et al.  Insights into the origin of cooperative effects in the spin transition of [Fe(NH2trz)3](NO3)2: the role of supramolecular interactions evidenced in the crystal structure of [Cu(NH2trz)3](NO3)2.H2O. , 2010, Inorganic chemistry.

[13]  Manuel Gruber,et al.  Robust spin crossover and memristance across a single molecule , 2012, Nature Communications.

[14]  Kamel Boukheddaden,et al.  Two-dimensional Ising-like model with specific edge effects for spin-crossover nanoparticles: A Monte Carlo study , 2011 .

[15]  O. Roubeau,et al.  Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials , 2011 .

[16]  Eliseo Ruiz,et al.  Charge transport properties of spin crossover systems. , 2014, Physical chemistry chemical physics : PCCP.

[17]  Aurelian Rotaru,et al.  Spin state dependence of electrical conductivity of spin crossover materials. , 2012, Chemical communications.

[18]  Eugenio Coronado,et al.  Room‐Temperature Electrical Addressing of a Bistable Spin‐Crossover Molecular System , 2011, Advanced materials.

[19]  M. Rudneva,et al.  The use of STEM imaging to analyze thickness variations due to electromigration-induced mass transport in thin polycrystalline nanobridges. , 2013, Ultramicroscopy.

[20]  O. Roubeau Triazole-based one-dimensional spin-crossover coordination polymers. , 2012, Chemistry.

[21]  Eugenio Coronado,et al.  Bistable Spin‐Crossover Nanoparticles Showing Magnetic Thermal Hysteresis near Room Temperature , 2007 .

[22]  C. Kepert,et al.  Cooperativity in spin crossover systems: memory, magnetism and microporosity , 2004 .

[23]  Azzedine Bousseksou,et al.  Spin Crossover at the Nanometre Scale , 2013 .

[24]  J. Dayen,et al.  Photoconduction in [Fe(Htrz)2(trz)](BF4)·H2O nanocrystals. , 2011, Chemical communications.

[25]  José Sánchez Costa,et al.  Iron spin-crossover compounds: from fundamental studies to practical applications. , 2009, Dalton transactions.

[26]  Odile Stéphan,et al.  Spin-crossover coordination nanoparticles. , 2008, Inorganic chemistry.