New Algorithms and Bounds for Halving Pseudolines

Let P be a set of points in general position in the plane. A halving line of P is a line passing through two points of P and cutting the remaining \(n-2\) points in a half (almost half if n is odd). Generalized configurations of points and their representations using allowable sequences are useful for bounding the number of halving lines.

[1]  Bernardo M. Ábrego,et al.  A Lower Bound for the Rectilinear Crossing Number , 2005, Graphs Comb..

[2]  Richard Pollack,et al.  Semispaces of Configurations, Cell Complexes of Arrangements , 1984, J. Comb. Theory, Ser. A.

[3]  Adrian Dumitrescu,et al.  New Lower Bounds for the Number of Pseudoline Arrangements , 2018, SODA.

[4]  Peter W. Shor,et al.  Stretchability of Pseudolines is NP-Hard , 1990, Applied Geometry And Discrete Mathematics.

[5]  Stefan Felsner,et al.  Coding and Counting Arrangements of Pseudolines , 2011, Discret. Comput. Geom..

[6]  E. Welzl,et al.  Convex Quadrilaterals and k-Sets , 2003 .

[7]  Alina Beygelzimer,et al.  On halving line arrangements , 2002, Discret. Math..

[8]  Noga Alon,et al.  The number of small semispaces of a finite set of points in the plane , 1986, J. Comb. Theory, Ser. A.

[9]  Jacob E. Goodman,et al.  Pseudoline Arrangements , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[10]  N. Mnev The universality theorems on the classification problem of configuration varieties and convex polytopes varieties , 1988 .

[11]  Stefan Felsner On the Number of Arrangements of Pseudolines , 1997, Discret. Comput. Geom..

[12]  Jesús Leaños,et al.  On ≤k-Edges, Crossings, and Halving Lines of Geometric Drawings of Kn , 2011, Discret. Comput. Geom..

[13]  Jesús Leaños,et al.  Point sets that minimize (≤k)-edges, 3-decomposable drawings, and the rectilinear crossing number of K30 , 2010, Discret. Math..

[14]  P. Erdös,et al.  Dissection Graphs of Planar Point Sets , 1973 .

[15]  Jesús Leaños,et al.  The maximum number of halving lines and the rectilinear crossing number of Kn for n , 2008, Electron. Notes Discret. Math..

[16]  M. Dolores López,et al.  An improvement of the lower bound on the maximum number of halving lines in planar sets with 32 points , 2018, Electron. Notes Discret. Math..

[17]  József Balogh,et al.  An extended lower bound on the number of (k)-edges to generalized configurations of points and the pseudolinear crossing number of Kn , 2008, J. Comb. Theory, Ser. A.

[18]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[19]  Raimund Seidel,et al.  Circles through two points that always enclose many points , 1989 .

[20]  Jürgen Bokowski On Heuristic Methods for Finding Realizations of Surfaces , 2008 .

[21]  David Eppstein Sets of points with many halving lines , 1992 .