Finite Fields and Applications

We extend a result of Ding and Helleseth on the autocorrelation of a cyclotomic generator in several ways. We define and analyze cyclotomic generators of arbitrary orders and over arbitrary finite fields, and we consider two, in general, different definitions of autocorrelation. Cyclotomic generators are closely related to the discrete logarithm. Hence, the results of this paper do not only describe interesting cryptographic properties of cyclotomic generators and their generalizations but also desirable features of the discrete logarithm.

[1]  Joachim von zur Gathen,et al.  Gauss periods: orders and cryptographical applications , 1998, Math. Comput..

[2]  Daniel Panario,et al.  Analysis of Ben-Or's polynomial irreducibility test , 1998, Random Struct. Algorithms.

[3]  Don Coppersmith,et al.  Fast evaluation of logarithms in fields of characteristic two , 1984, IEEE Trans. Inf. Theory.

[4]  Mireille Car Théorèmes de densité dans $F_q[X]$ , 1987 .

[5]  Michael O. Rabin,et al.  Probabilistic Algorithms in Finite Fields , 1980, SIAM J. Comput..

[6]  Philippe Flajolet,et al.  Mellin transforms and asymptotics , 1994, Acta Informatica.

[7]  Joachim von zur Gathen,et al.  Factoring Polynomials over Special Finite Fields , 2001 .

[8]  Joachim von zur Gathen,et al.  Polynomial factorization over F2 , 2002, Math. Comput..

[9]  Daniel Panario,et al.  Smallest components in decomposable structures: Exp-log class , 2001, Algorithmica.

[10]  K. Dickman On the frequency of numbers containing prime factors of a certain relative magnitude , 1930 .

[11]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[12]  A. Odlyzko Asymptotic enumeration methods , 1996 .

[13]  Daniel Panario,et al.  IRREDUCIBLE POLYNOMIALS OF GIVEN FORMS , 1999 .

[14]  L. Carlitz The distribution of irreducible polynomials in several indeterminates. II , 1965 .

[15]  Michael Drmota,et al.  A Rigorous Proof of the Waterloo Algorithm for the Discrete Logarithm Problem , 2002, Des. Codes Cryptogr..

[16]  Daniel Panario,et al.  The index calculus method using non-smooth polynomials , 2001, Math. Comput..

[17]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[18]  Alfredo Viola,et al.  Analysis of Rabin's irreducibility test for polynomials over finite fields , 2001, Random Struct. Algorithms.

[19]  Steven R. Finch,et al.  Mathematical constants , 2005, Encyclopedia of mathematics and its applications.

[20]  Doug Hensley,et al.  The statistics of continued fractions for polynomials over a finite field , 1996 .

[21]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration , 1973, J. Comb. Theory A.

[22]  S. Vanstone,et al.  Computing Logarithms in Finite Fields of Characteristic Two , 1984 .

[23]  Victor Shoup,et al.  A New Polynomial Factorization Algorithm and its Implementation , 1995, J. Symb. Comput..

[24]  Philippe Flajolet,et al.  Gaussian limit distributions and exponential tails , 1993 .

[25]  Stephen D. Cohen The values of a polynomial over a finite field , 1973 .

[26]  Xavier Gourdon,et al.  Largest component in random combinatorial structures , 1998, Discret. Math..

[27]  Donald E. Knuth,et al.  The Art of Computer Programming, Vol. 2 , 1981 .

[28]  L Carlitz The Arithmetic of Polynomials in a Galois Field. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Knopfmacher,et al.  Counting polynomials with a given number of zeros in a finite field , 1990 .

[30]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration II: Multivariate Generating Functions , 1983, J. Comb. Theory, Ser. A.

[31]  Arnold Knopfmacher,et al.  The exact length of the Euclidean algorithm in [ X ] , 1988 .

[32]  H. Niederreiter Factoring polynomials over finite fields using differential equations and normal bases , 1994 .

[33]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[34]  L. Carlitz,et al.  The distribution of irreducible polynomials in several indeterminates , 1963 .

[35]  Daniel Panario,et al.  Exact Largest and Smallest Size of Components , 2001, Algorithmica.

[36]  Zhicheng Gao,et al.  Central and local limit theorems applied to asymptotic enumeration IV: multivariate generating functions , 1992 .

[37]  Daniel Panario,et al.  Polynomials over finite fields free from large and small degree irreducible factors , 2002, J. Algorithms.

[38]  Stephen D. Cohen The distribution of irreducible polynomials in several indeterminates over a finite field , 1968 .

[39]  de Ng Dick Bruijn On the number of positive integers $\leq x$ and free of prime factors $>y$ , 1951 .

[40]  Shuhong Gao,et al.  Hensel lifting and bivariate polynomial factorisation over finite fields , 2002, Math. Comput..

[41]  Joachim von zur Gathen,et al.  Analysis of Euclidean Algorithms for Polynomials over Finite Fields , 1990, J. Symb. Comput..

[42]  Arnold Knopfmacher,et al.  Counting irreducible factors of polynomials over a finite field , 1993, Discret. Math..

[43]  Arnold Knopfmacher,et al.  Distinct degree factorizations for polynomials over a finite field , 1995, SIGS.

[44]  Philippe Flajolet,et al.  The Complete Analysis of a Polynomial Factorization Algorithm over Finite Fields , 2001, J. Algorithms.

[45]  Michael Ben-Or,et al.  Probabilistic algorithms in finite fields , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[46]  Erich Kaltofen,et al.  Subquadratic-time factoring of polynomials over finite fields , 1998, Math. Comput..

[47]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: Preface , 1994 .

[48]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[49]  Taher ElGamal,et al.  A public key cyryptosystem and signature scheme based on discrete logarithms , 1985 .

[50]  Philippe Flajolet,et al.  An introduction to the analysis of algorithms , 1995 .

[51]  Shuhong Gao,et al.  Tests and constructions of irreducible polynomials over finite fields , 1997 .

[52]  Leonard M. Adleman,et al.  The function field sieve , 1994, ANTS.

[53]  Kenneth S. Williams Polynomials with Irreducible Factors of Specified Degree , 1969, Canadian Mathematical Bulletin.

[54]  R. G. Swan,et al.  Factorization of polynomials over finite fields. , 1962 .

[55]  Joachim von zur Gathen,et al.  Computing Frobenius maps and factoring polynomials , 2005, computational complexity.

[56]  Joachim von zur Gathen,et al.  Factoring Polynomials Over Finite Fields: A Survey , 2001, J. Symb. Comput..

[57]  Saburô Uchiyama Note on the Mean Value of V(f). III , 1955 .

[58]  Philippe Flajolet,et al.  Gaussian limiting distributions for the number of components in combinatorial structures , 1990, J. Comb. Theory, Ser. A.

[59]  Andrew M. Odlyzko,et al.  Discrete Logarithms in Finite Fields and Their Cryptographic Significance , 1985, EUROCRYPT.