Ab-initio tiling and atomic structure for decagonal ZnMgY quasicrystal

We discover the detailed atomic structure of -MgZnY, a stable decagonal quasicrystal alloy of the layered Frank–Kasper type, and related phases, using the ‘tiling and decoration’ approach. The atoms have invariable sites in the rectangle and triangle tiles of a 10-fold-symmetric planar tiling. To discover the lowest-energy structures, we combine the methods of density functional theory (DFT) total energy calculations, empirical oscillating pair potentials (fitted to DFT), fitting effective Hamiltonians for tilings, and discovering optimum tiling structures using a nonlocal tile-reshuffling algorithm. We find a family of almost stable binary compounds with varying composition, including the decagonal quasicrystal and the known MgZn; in addition, we show the ternary versions can be stable: -MgZnY at high temperature, and -MgZnSc even at .

[1]  Y. Prots,et al.  Crystal structure and phase stability of the Φ phase in the Al–Mg–Zn system , 2013 .

[2]  C. L. Henley,et al.  Empirical oscillating potentials for alloys from ab initio fits and the prediction of quasicrystal-related structures in the Al-Cu-Sc system , 2008, 0802.2926.

[3]  W. Steurer,et al.  Synthesis of decagonal Zn–Mg–RE compounds , 2011 .

[4]  M. Mihalkovič,et al.  Cell-constrained melt-quench simulation of d-AlCoNi: Ni-rich versus Co-rich structures , 2011 .

[5]  M. Mihalkovič,et al.  Matching rules from Al–Co potentials in an almost realistic model , 2008, 0809.0084.

[6]  M. Mihalkovič,et al.  Penrose matching rules from realistic potentials in a model system , 2008, 0809.0081.

[7]  M. Mihalkovič,et al.  Quasicrystal approximants with novel compositions and structures , 2004, cond-mat/0402371.

[8]  K. Ohoyama,et al.  Magnetic correlations in the Cd–Mg–Tb icosahedral quasicrystal , 2002 .

[9]  H. Fuess,,et al.  Preparation of decagonal Zn-Mg-Y by melt spinning , 2002 .

[10]  E. Cockayne,et al.  Total-energy-based prediction of a quasicrystal structure , 2001, cond-mat/0102085.

[11]  E. Abe,et al.  Orthorhombic tau-Zn-Mg-Dy phase related to a Frank-Kasper type decagonal quasicrystal. , 2000, Acta crystallographica. Section B, Structural science.

[12]  E. Abe,et al.  QUASICRYSTAL-CRYSTAL TRANSFORMATION IN ZN-MG-RARE-EARTH ALLOYS , 1999 .

[13]  E. Abe,et al.  Structure of a Quasicrystal without Atomic Clusters , 1999 .

[14]  M. Boissieu,et al.  Aperiodic '97: Proceedings of the International Conference on Aperiodic Crystals , 1999 .

[15]  E. Abe,et al.  The structure of a Frank-Kasper decagonal quasicrystal in the Zn-Mg-Dy system : Comparison with the Al-Ni-Co system , 1998 .

[16]  E. Abe,et al.  Composition and stability of decagonal quasicrystals in the Zn-Mg-rare-earth systems , 1998 .

[17]  J. Roth,et al.  A new binary decagonal Frank-Kasper quasicrystal phase , 1996, cond-mat/9609281.

[18]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[19]  Zhu,et al.  Icosahedral quasicrystal decoration models. I. Geometrical principles. , 1996, Physical review. B, Condensed matter.

[20]  Takeuchi,et al.  Electronic structure, electron transport properties, and relative stability of icosahedral quasicrystals and their 1/1 and 2/1 approximants in the Al-Mg-Zn alloy system. , 1995, Physical review. B, Condensed matter.

[21]  Cockayne Dense quasiperiodic decagonal disc packing. , 1995, Physical review. B, Condensed matter.

[22]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[23]  A. Inoue,et al.  Highly ordered structure of icosahedral quasicrystals in Zn-Mg-RE (RE ≡ rare earth metals) systems , 1994 .

[24]  A. Inoue,et al.  Stable Zn-Mg-rare-earth face-centred icosahedral alloys with pentagonal dodecahedral solidification morphology , 1994 .

[25]  H. Okamoto Comment on Mg-Zn (magnesium-zinc) , 1994 .

[26]  Henley,et al.  Random square-triangle tilings: A model for twelvefold-symmetric quasicrystals. , 1993, Physical review. B, Condensed matter.

[27]  J. Kasper,et al.  COMPLEX ALLOY STRUCTURES REGARDED AS SPHERE PACKINGS. I. DEFINITIONS AND BASIC PRINCIPLES , 1958 .