A Stochastic Filtering Technique for Fluid Flow Velocity Fields Tracking

In this paper, we present a method for the temporal tracking of fluid flow velocity fields. The technique we propose is formalized within a sequential Bayesian filtering framework. The filtering model combines an Ito diffusion process coming from a stochastic formulation of the vorticity-velocity form of the Navier-Stokes equation and discrete measurements extracted from the image sequence. In order to handle a state space of reasonable dimension, the motion field is represented as a combination of adapted basis functions, derived from a discretization of the vorticity map of the fluid flow velocity field. The resulting nonlinear filtering problem is solved with the particle filter algorithm in continuous time. An adaptive dimensional reduction method is applied to the filtering technique, relying on dynamical systems theory. The efficiency of the tracking method is demonstrated on synthetic and real-world sequences.

[1]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[2]  Anne Cuzol,et al.  Vortex and Source Particles for Fluid Motion Estimation , 2005, Scale-Space.

[3]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[4]  Joachim Weickert,et al.  Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint , 2001, Journal of Mathematical Imaging and Vision.

[5]  Patrick Pérez,et al.  Dense Estimation of Fluid Flows , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Paul Krause,et al.  Dimensional reduction for a Bayesian filter. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[7]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[8]  Jing Yuan,et al.  Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation , 2005, Journal of Mathematical Imaging and Vision.

[9]  Christoph Schnörr,et al.  On-Line Variational Estimation of Dynamical Fluid Flows with Physics-Based Spatio-temporal Regularization , 2006, DAGM-Symposium.

[10]  P. Protter,et al.  The Monte-Carlo method for filtering with discrete-time observations , 2001 .

[11]  Gunnar Farnebäck Very high accuracy velocity estimation using orientation tensors , 2001, ICCV 2001.

[12]  Sylvie Méléard,et al.  Monte-Carlo approximations for 2d Navier-Stokes equations with measure initial data , 2001 .

[13]  Anne Cuzol,et al.  A stochastic filter for fluid motion tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[14]  A. Leonard Vortex methods for flow simulation , 1980 .

[15]  Patrick Pérez,et al.  Data fusion for visual tracking with particles , 2004, Proceedings of the IEEE.

[16]  Mireille Bossy,et al.  SOME STOCHASTIC PARTICLE METHODS FOR NONLINEAR PARABOLIC PDES , 2005 .

[17]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[18]  M. Farge,et al.  Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis , 1999 .

[19]  Nicolas Papadakis,et al.  A Variational Technique for Time Consistent Tracking of Curves and Motion , 2008, Journal of Mathematical Imaging and Vision.

[20]  Étienne Mémin,et al.  Partial Linear Gaussian Models for Tracking in Image Sequences Using Sequential Monte Carlo Methods , 2006, International Journal of Computer Vision.

[21]  É. Mémin,et al.  3 D motion estimation of atmospheric layers from image sequences , 2007 .

[22]  Robert N. Miller,et al.  Ensemble Generation for Models of Multimodal Systems , 2002 .

[23]  M. Pulvirenti,et al.  Hydrodynamics in two dimensions and vortex theory , 1982 .

[24]  A. Chorin Numerical study of slightly viscous flow , 1973, Journal of Fluid Mechanics.

[25]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[26]  C. Schnörr,et al.  Optical Stokes Flow Estimation: An Imaging‐Based Control Approach , 2006 .

[27]  Nicolas Papadakis,et al.  Layered Estimation of Atmospheric Mesoscale Dynamics From Satellite Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[29]  Anne Cuzol,et al.  A Low Dimensional Fluid Motion Estimator , 2007, International Journal of Computer Vision.

[30]  N. Papadakis,et al.  Time-consistent estimators of 2D/3D motion of atmospheric layers from pressure images , 2007 .

[31]  Guillermo Artana,et al.  A Fluid Motion Estimator for Schlieren Image Velocimetry , 2006, ECCV.

[32]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[33]  Patrick Pérez,et al.  Extraction of Singular Points from Dense Motion Fields: An Analytic Approach , 2003, Journal of Mathematical Imaging and Vision.

[34]  N. Papadakis,et al.  A variational method for joint tracking of curve and motion , 2007 .

[35]  Jacques Verron,et al.  A singular evolutive extended Kalman filter for data assimilation in oceanography , 1998 .

[36]  C. Schnörr,et al.  Variational estimation of experimental fluid flows with physics-based spatio-temporal regularization , 2007 .