Multiple Memory Shape Memory Alloys

Until now, shape memory alloys (SMAs) have been largely limited to “remembering” a single memory. In other words, monolithic components only possess a single set of functional properties. The current work describes how theorized change to local chemical composition induced through laser processing enables controlled augmentation of transformation temperatures. Proof of concept was demonstrated by locally embedding multiple shape memories into a monolithic NiTi component. This novel technique overcomes traditional fabrication challenges and promises to enhance SMA functionality and facilitate novel applications through producing a new class of smart materials; namely multiple memory materials (MMMs).

[1]  Y. Zhou,et al.  Enhanced thermomechanical functionality of a laser processed hybrid NiTi–NiTiCu shape memory alloy , 2012 .

[2]  Yinong Liu,et al.  Functionally graded NiTi strips prepared by laser surface anneal , 2012 .

[3]  Y. Zhou,et al.  Mechanical and Functional Properties of Laser-Welded Ti-55.8 Wt Pct Ni Nitinol Wires , 2011 .

[4]  Yong S. Chu,et al.  Identification of Quaternary Shape Memory Alloys with Near‐Zero Thermal Hysteresis and Unprecedented Functional Stability , 2010 .

[5]  Colin Smith,et al.  Working principle of bio-inspired shape memory alloy composite actuators , 2010 .

[6]  J. Sabbaghzadeh,et al.  Alloying element losses in pulsed Nd : YAG laser welding of stainless steel 316 , 2008 .

[7]  Yong Liu,et al.  Dependence of Transformation Temperatures of NiTi‐based Shape‐Memory Alloys on the Number and Concentration of Valence Electrons , 2008 .

[8]  S. Corbin,et al.  Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis , 2008 .

[9]  Tae-hyun Nam,et al.  Gradient anneal of functionally graded NiTi , 2008 .

[10]  F. J. Gil,et al.  Laser welding of NiTi orthodontic archwires for selective force application , 2008, Journal of materials science. Materials in medicine.

[11]  B. Vamsi Krishna,et al.  Laser Processing of Net-Shape NiTi Shape Memory Alloy , 2007 .

[12]  G. Eggeler,et al.  Influence of Ni on martensitic phase transformations in NiTi shape memory alloys , 2007 .

[13]  M. Wuttig,et al.  Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width , 2006, Nature materials.

[14]  Ken Gall,et al.  Thermal processing of polycrystalline NiTi shape memory alloys , 2005 .

[15]  P. W. Fuerschbach,et al.  Composition change of stainless steel during microjoining with short laser pulse , 2004 .

[16]  P. W. Fuerschbach,et al.  Alloying element vaporization during laser spot welding of stainless steel , 2003 .

[17]  R. B. Pérez-Sáez,et al.  Influence of Al and Ni concentration on the Martensitic transformation in Cu-Al-Ni shape-memory alloys , 2002 .

[18]  M. Wu,et al.  Fabrication of Nitinol Materials and Components , 2002 .

[19]  Karel Mazanec,et al.  On precipitation kinetics in TiNi shape memory alloys , 2001 .

[20]  Yong Liu,et al.  Effect of annealing on the transformation behavior and superelasticity of NiTi shape memory alloy , 2001 .

[21]  Dimitris C. Lagoudas,et al.  Influence of cold work and heat treatment on the shape memory effect and plastic strain development of NiTi , 2001 .

[22]  X. Ren,et al.  Why Does the Martensitic Transformation Temperature Strongly Depend on Composition? , 2000 .

[23]  T. G. Frank,et al.  Instruments based on shape-memory alloy properties for minimal access surgery, interventional radiology and flexible endoscopy , 2000 .

[24]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[25]  Weijia Tang,et al.  Thermodynamic study of the low-temperature phase B19′ and the martensitic transformation in near-equiatomic Ti-Ni shape memory alloys , 1997 .

[26]  A. Jardine,et al.  Shape memory TiNi synthesis from elemental powders , 1994 .

[27]  Carl L. Yaws,et al.  Handbook of vapor pressure , 1994 .

[28]  T. DebRoy,et al.  Mechanism of alloying element vaporization during laser welding , 1987 .

[29]  J. Mazumder,et al.  Control of Magnesium Loss During Laser Welding of Al-5083 Using a Plasma Suppression Technique , 1985 .

[30]  T. DebRoy,et al.  Alloying element vaporization and weld pool temperature during laser welding of AlSl 202 stainless steel , 1984 .

[31]  K. Eckelmeyer The effect of alloying on the shape memory phenomenon in nitinol , 1976 .

[32]  R. J. Wasilewski,et al.  Homogeneity range and the martensitic transformation in TiNi , 1971 .

[33]  J.H.N. van Vucht,et al.  Martensitic transformations in gold-titanium, palladium-titanium and platinum-titanium alloys near the equiatomic composition , 1970 .

[34]  S. R. Butler,et al.  On the Martensitic Transformation in TiNi , 1967 .

[35]  G. Purdy,et al.  Calorimetric Study of a Diffusionless Phase Transition in TiNi , 1966 .

[36]  W. J. Buehler,et al.  Crystal Structure and a Unique ``Martensitic'' Transition of TiNi , 1965 .