Augmented kludge waveforms for detecting extreme-mass-ratio inspirals
暂无分享,去创建一个
J. Gair | C. Moore | A. J. Chua | C. Moore
[1] J. Gair,et al. Gravitational waves from extreme mass ratio inspirals around bumpy black holes , 2017, 1707.00712.
[2] J. Gair,et al. Science with the space-based interferometer LISA. V: Extreme mass-ratio inspirals , 2017, 1703.09722.
[3] J. Gair,et al. Understanding the importance of transient resonances in extreme mass ratio inspirals , 2016, 1608.08951.
[4] C. Evans,et al. Eccentric-orbit extreme-mass-ratio inspiral gravitational wave energy fluxes to 7PN order , 2015, 1512.03051.
[5] J. Gair,et al. Science with the space-based interferometer eLISA: Supermassive black hole binaries , 2015, 1511.05581.
[6] J. Gair,et al. Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis , 2015, 1510.06245.
[7] A. Pound. Second-order perturbation theory: problems on large scales , 2015, 1510.05172.
[8] N. Sago,et al. Calculation of radiation reaction effect on orbital parameters in Kerr spacetime , 2015, 1505.01600.
[9] C. Moore,et al. Gravitational-wave sensitivity curves , 2014, 1408.0740.
[10] W. J. Weber,et al. The Gravitational Universe , 2013, 1305.5720.
[11] Shane L. Larson,et al. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors , 2012, Living reviews in relativity.
[12] P. Amaro-Seoane. Stellar dynamics and extreme-mass ratio inspirals , 2012 .
[13] L. G. Boté,et al. Laser Interferometer Space Antenna , 2012 .
[14] J. Gair,et al. Evolution of inspiral orbits around a Schwarzschild black hole , 2011, 1111.6908.
[15] T. Hinderer,et al. Transient resonances in the inspirals of point particles into black holes. , 2010, Physical review letters.
[16] W. Marsden. I and J , 2012 .
[17] J. Gair,et al. Forced motion near black holes , 2010, 1012.5111.
[18] E. Poisson,et al. The Motion of Point Particles in Curved Spacetime , 2003, Living reviews in relativity.
[19] J. Gair,et al. LISA extreme-mass-ratio inspiral events as probes of the black hole mass function , 2010, 1004.1921.
[20] B. S. Sathyaprakash,et al. A tapering window for time-domain templates and simulated signals in the detection of gravitational waves from coalescing compact binaries , 2010, 1003.2939.
[21] L. Barack. Gravitational self-force in extreme mass-ratio inspirals , 2009, 0908.1664.
[22] Jonathan R. Gair,et al. Influence of conservative corrections on parameter estimation for extreme-mass-ratio inspirals , 2009 .
[23] J. Gair,et al. An algorithm for the detection of extreme mass ratio inspirals in LISA data , 2009, 0902.4133.
[24] J. Gair. Probing black holes at low redshift using LISA EMRI observations , 2008, 0811.0188.
[25] P. Graff,et al. The Mock LISA Data Challenges: from challenge 3 to challenge 4 , 2008, 0806.2110.
[26] E. Berti,et al. Accuracy of the post-Newtonian approximation: Optimal asymptotic expansion for quasicircular, extreme-mass ratio inspirals , 2008, 0803.1853.
[27] Chelsea L. MacLeod,et al. Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information , 2007, 0712.0618.
[28] J. Gair,et al. The Mock LISA Data Challenges: from Challenge 1B to Challenge 3 , 2008 .
[29] Report on the second Mock LISA Data Challenge , 2007, 0711.2667.
[30] Jonathan R. Gair,et al. Intermediate and extreme mass-ratio inspirals—astrophysics, science applications and detection using LISA , 2007, astro-ph/0703495.
[31] B. S. Sathyaprakash,et al. Report on the first round of the Mock LISA Data Challenges , 2007 .
[32] Stanislav Babak,et al. An Overview of the Mock LISA Data Challenges , 2006 .
[33] J. Gair,et al. "Kludge"gravitational waveforms for a test-body orbiting a Kerr black hole , 2006, gr-qc/0607007.
[34] J. Gair,et al. Improved approximate inspirals of test bodies into Kerr black holes , 2005, gr-qc/0510129.
[35] S. Hughes,et al. Gravitational wave snapshots of generic extreme mass ratio inspirals , 2005, gr-qc/0509101.
[36] Michel Capderou,et al. Satellites: Orbits and Missions , 2005 .
[37] E. Phinney,et al. Event Rate Estimates for LISA Extreme Mass Ratio Capture Sources , 2004, gr-qc/0405137.
[38] Curt Cutler,et al. LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.
[39] S. Hughes,et al. Rotating black hole orbit functionals in the frequency domain , 2003, astro-ph/0308479.
[40] H. Tagoshi,et al. Analytic Black Hole Perturbation Approach to Gravitational Radiation , 2003, Living reviews in relativity.
[41] Y. Mino. Perturbative approach to an orbital evolution around a supermassive black hole , 2003, gr-qc/0302075.
[42] A. Buonanno,et al. Detection template families for gravitational waves from the final stages of binary--black-hole inspirals: Nonspinning case , 2002, gr-qc/0205122.
[43] S. Hughes,et al. Approximating the inspiral of test bodies into Kerr black holes , 2002, gr-qc/0205033.
[44] W. Schmidt. Celestial mechanics in Kerr spacetime , 2002, gr-qc/0202090.
[45] S. Hughes. Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. II. Inspiral trajectories and gravitational waveforms , 2000, gr-qc/0104041.
[46] C. Cutler. Angular resolution of the LISA gravitational wave detector , 1997, gr-qc/9703068.
[47] Bernard F. Schutz,et al. Searching for periodic sources with LIGO , 1997, gr-qc/9702050.
[48] Ryan. Effect of gravitational radiation reaction on nonequatorial orbits around a Kerr black hole. , 1995, Physical review. D, Particles and fields.
[49] B. Owen,et al. Search templates for gravitational waves from inspiraling binaries: Choice of template spacing. , 1995, Physical review. D, Particles and fields.
[50] Thorne,et al. Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries. , 1994, Physical review. D, Particles and fields.
[51] Flanagan,et al. Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.
[52] G. Schäfer,et al. Binary systems: higher order gravitational radiation damping and wave emission , 1992 .
[53] Victor Brumberg,et al. Essential Relativistic Celestial Mechanics , 1991 .
[54] Subrahmanyan Chandrasekhar,et al. The Mathematical Theory of Black Holes , 1983 .
[55] W. Press. Gravitational radiation from sources which extend into their own wave zone , 1977 .
[56] R. F. O’Connell,et al. Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments , 1975 .
[57] J. Bekenstein. Gravitational-Radiation Recoil and Runaway Black Holes , 1973 .
[58] J. Mathews,et al. Gravitational radiation from point masses in a Keplerian orbit , 1963 .
[59] E. L. Rees,et al. Graphical Discussion of the Roots of a Quartic Equation , 1922 .