Augmented kludge waveforms for detecting extreme-mass-ratio inspirals

The extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes are an important class of source for the future space-based gravitational-wave detector LISA. Detecting signals from EMRIs will require waveform models that are both accurate and computationally efficient. In this paper, we present the latest implementation of an augmented analytic kludge (AAK) model, publicly available at github.com/alvincjk/EMRI_Kludge_Suite as part of an EMRI waveform software suite. This version of the AAK model has improved accuracy compared to its predecessors, with two-month waveform overlaps against a more accurate fiducial model exceeding 0.97 for a generic range of sources; it also generates waveforms 5-15 times faster than the fiducial model. The AAK model is well suited for scoping out data analysis issues in the upcoming round of mock LISA data challenges. A simple analytic argument shows that it might even be viable for detecting EMRIs with LISA through a semi-coherent template bank method, while the use of the original analytic kludge in the same approach will result in around 90% fewer detections.

[1]  J. Gair,et al.  Gravitational waves from extreme mass ratio inspirals around bumpy black holes , 2017, 1707.00712.

[2]  J. Gair,et al.  Science with the space-based interferometer LISA. V: Extreme mass-ratio inspirals , 2017, 1703.09722.

[3]  J. Gair,et al.  Understanding the importance of transient resonances in extreme mass ratio inspirals , 2016, 1608.08951.

[4]  C. Evans,et al.  Eccentric-orbit extreme-mass-ratio inspiral gravitational wave energy fluxes to 7PN order , 2015, 1512.03051.

[5]  J. Gair,et al.  Science with the space-based interferometer eLISA: Supermassive black hole binaries , 2015, 1511.05581.

[6]  J. Gair,et al.  Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis , 2015, 1510.06245.

[7]  A. Pound Second-order perturbation theory: problems on large scales , 2015, 1510.05172.

[8]  N. Sago,et al.  Calculation of radiation reaction effect on orbital parameters in Kerr spacetime , 2015, 1505.01600.

[9]  C. Moore,et al.  Gravitational-wave sensitivity curves , 2014, 1408.0740.

[10]  W. J. Weber,et al.  The Gravitational Universe , 2013, 1305.5720.

[11]  Shane L. Larson,et al.  Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors , 2012, Living reviews in relativity.

[12]  P. Amaro-Seoane Stellar dynamics and extreme-mass ratio inspirals , 2012 .

[13]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[14]  J. Gair,et al.  Evolution of inspiral orbits around a Schwarzschild black hole , 2011, 1111.6908.

[15]  T. Hinderer,et al.  Transient resonances in the inspirals of point particles into black holes. , 2010, Physical review letters.

[16]  W. Marsden I and J , 2012 .

[17]  J. Gair,et al.  Forced motion near black holes , 2010, 1012.5111.

[18]  E. Poisson,et al.  The Motion of Point Particles in Curved Spacetime , 2003, Living reviews in relativity.

[19]  J. Gair,et al.  LISA extreme-mass-ratio inspiral events as probes of the black hole mass function , 2010, 1004.1921.

[20]  B. S. Sathyaprakash,et al.  A tapering window for time-domain templates and simulated signals in the detection of gravitational waves from coalescing compact binaries , 2010, 1003.2939.

[21]  L. Barack Gravitational self-force in extreme mass-ratio inspirals , 2009, 0908.1664.

[22]  Jonathan R. Gair,et al.  Influence of conservative corrections on parameter estimation for extreme-mass-ratio inspirals , 2009 .

[23]  J. Gair,et al.  An algorithm for the detection of extreme mass ratio inspirals in LISA data , 2009, 0902.4133.

[24]  J. Gair Probing black holes at low redshift using LISA EMRI observations , 2008, 0811.0188.

[25]  P. Graff,et al.  The Mock LISA Data Challenges: from challenge 3 to challenge 4 , 2008, 0806.2110.

[26]  E. Berti,et al.  Accuracy of the post-Newtonian approximation: Optimal asymptotic expansion for quasicircular, extreme-mass ratio inspirals , 2008, 0803.1853.

[27]  Chelsea L. MacLeod,et al.  Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information , 2007, 0712.0618.

[28]  J. Gair,et al.  The Mock LISA Data Challenges: from Challenge 1B to Challenge 3 , 2008 .

[29]  Report on the second Mock LISA Data Challenge , 2007, 0711.2667.

[30]  Jonathan R. Gair,et al.  Intermediate and extreme mass-ratio inspirals—astrophysics, science applications and detection using LISA , 2007, astro-ph/0703495.

[31]  B. S. Sathyaprakash,et al.  Report on the first round of the Mock LISA Data Challenges , 2007 .

[32]  Stanislav Babak,et al.  An Overview of the Mock LISA Data Challenges , 2006 .

[33]  J. Gair,et al.  "Kludge"gravitational waveforms for a test-body orbiting a Kerr black hole , 2006, gr-qc/0607007.

[34]  J. Gair,et al.  Improved approximate inspirals of test bodies into Kerr black holes , 2005, gr-qc/0510129.

[35]  S. Hughes,et al.  Gravitational wave snapshots of generic extreme mass ratio inspirals , 2005, gr-qc/0509101.

[36]  Michel Capderou,et al.  Satellites: Orbits and Missions , 2005 .

[37]  E. Phinney,et al.  Event Rate Estimates for LISA Extreme Mass Ratio Capture Sources , 2004, gr-qc/0405137.

[38]  Curt Cutler,et al.  LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.

[39]  S. Hughes,et al.  Rotating black hole orbit functionals in the frequency domain , 2003, astro-ph/0308479.

[40]  H. Tagoshi,et al.  Analytic Black Hole Perturbation Approach to Gravitational Radiation , 2003, Living reviews in relativity.

[41]  Y. Mino Perturbative approach to an orbital evolution around a supermassive black hole , 2003, gr-qc/0302075.

[42]  A. Buonanno,et al.  Detection template families for gravitational waves from the final stages of binary--black-hole inspirals: Nonspinning case , 2002, gr-qc/0205122.

[43]  S. Hughes,et al.  Approximating the inspiral of test bodies into Kerr black holes , 2002, gr-qc/0205033.

[44]  W. Schmidt Celestial mechanics in Kerr spacetime , 2002, gr-qc/0202090.

[45]  S. Hughes Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. II. Inspiral trajectories and gravitational waveforms , 2000, gr-qc/0104041.

[46]  C. Cutler Angular resolution of the LISA gravitational wave detector , 1997, gr-qc/9703068.

[47]  Bernard F. Schutz,et al.  Searching for periodic sources with LIGO , 1997, gr-qc/9702050.

[48]  Ryan Effect of gravitational radiation reaction on nonequatorial orbits around a Kerr black hole. , 1995, Physical review. D, Particles and fields.

[49]  B. Owen,et al.  Search templates for gravitational waves from inspiraling binaries: Choice of template spacing. , 1995, Physical review. D, Particles and fields.

[50]  Thorne,et al.  Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries. , 1994, Physical review. D, Particles and fields.

[51]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[52]  G. Schäfer,et al.  Binary systems: higher order gravitational radiation damping and wave emission , 1992 .

[53]  Victor Brumberg,et al.  Essential Relativistic Celestial Mechanics , 1991 .

[54]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[55]  W. Press Gravitational radiation from sources which extend into their own wave zone , 1977 .

[56]  R. F. O’Connell,et al.  Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments , 1975 .

[57]  J. Bekenstein Gravitational-Radiation Recoil and Runaway Black Holes , 1973 .

[58]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .

[59]  E. L. Rees,et al.  Graphical Discussion of the Roots of a Quartic Equation , 1922 .