High-throughput screening of hypothetical metal-organic frameworks for thermal conductivity

[1]  P. Hopkins,et al.  Atomic coordination dictates vibrational characteristics and thermal conductivity in amorphous carbon , 2022, npj Computational Materials.

[2]  Zhiting Tian,et al.  Ultrahigh thermal conductivity in three-dimensional covalent organic frameworks , 2021, Materials Today Physics.

[3]  Zhuoxin Liu,et al.  Recent Progress in Designing Thermoelectric Metal-Organic Frameworks. , 2021, Small.

[4]  Song Li,et al.  Molecular Insights into the Correlation between Microstructure and Thermal Conductivity of Zeolitic Imidazolate Frameworks. , 2021, ACS applied materials & interfaces.

[5]  Gang Chen,et al.  Phonon-engineered extreme thermal conductivity materials , 2021, Nature Materials.

[6]  C. Wilmer,et al.  Influence of Missing Linker Defects on the Thermal Conductivity of Metal-Organic Framework HKUST-1. , 2020, ACS applied materials & interfaces.

[7]  Qiye Zheng,et al.  Advances in thermal conductivity for energy applications: a review , 2020 .

[8]  C. Wilmer,et al.  Enhanced Thermal Conductivity in a Diamine-Appended Metal-Organic Framework as a Result of Cooperative CO2 Adsorption. , 2020, ACS applied materials & interfaces.

[9]  R. Schmid,et al.  Identifying the Bottleneck for Heat Transport in Metal–Organic Frameworks , 2020, Advanced Theory and Simulations.

[10]  A. McGaughey,et al.  Observation of reduced thermal conductivity in a metal-organic framework due to the presence of adsorbates , 2020, Nature Communications.

[11]  C. Wilmer,et al.  Effect of Flexibility on Thermal Transport in Breathing Porous Crystals , 2020 .

[12]  Ryther Anderson,et al.  Large-Scale Free Energy Calculations on a Computational Metal–Organic Frameworks Database: Toward Synthetic Likelihood Predictions , 2020 .

[13]  H. Baumgart,et al.  Thermoelectric porous MOF based hybrid materials , 2020, APL Materials.

[14]  Diego A. Gómez-Gualdrón,et al.  Balancing volumetric and gravimetric uptake in highly porous materials for clean energy , 2020, Science.

[15]  Jin Zhang,et al.  Impacts of Functional Group Substitution and Pressure on the Thermal Conductivity of ZIF-8 , 2020 .

[16]  Diego A. Gómez-Gualdrón,et al.  Adsorption Isotherm Predictions for Multiple Molecules in MOFs Using the Same Deep Learning Model. , 2019, Journal of chemical theory and computation.

[17]  Jeffrey A. Reimer,et al.  Data-driven design of metal–organic frameworks for wet flue gas CO2 capture , 2019, Nature.

[18]  Zhiqun Lin,et al.  Hybrid Organic-Inorganic Thermoelectric Materials and Devices. , 2019, Angewandte Chemie.

[19]  V. Kapil,et al.  Thermal Engineering of Metal–Organic Frameworks for Adsorption Applications: A Molecular Simulation Perspective , 2019, ACS applied materials & interfaces.

[20]  C. Wilmer,et al.  Heat flux for many-body interactions: Corrections to LAMMPS. , 2019, Journal of chemical theory and computation.

[21]  Kang Liu,et al.  A general method for measuring the thermal conductivity of MOF crystals , 2019, International Journal of Heat and Mass Transfer.

[22]  Ryther Anderson,et al.  Role of Pore Chemistry and Topology in the CO2 Capture Capabilities of MOFs: From Molecular Simulation to Machine Learning , 2018, Chemistry of Materials.

[23]  Yongjie Hu,et al.  Experimental observation of high thermal conductivity in boron arsenide , 2018, Science.

[24]  C. Wilmer,et al.  Thermal Transport in Interpenetrated Metal–Organic Frameworks , 2018 .

[25]  A. McGaughey,et al.  Transient Mass and Thermal Transport during Methane Adsorption into the Metal-Organic Framework HKUST-1. , 2018, ACS applied materials & interfaces.

[26]  Diego A. Gómez-Gualdrón,et al.  Topologically Guided, Automated Construction of Metal–Organic Frameworks and Their Evaluation for Energy-Related Applications , 2017 .

[27]  Dennis Sheberla,et al.  A Microporous and Naturally Nanostructured Thermoelectric Metal-Organic Framework with Ultralow Thermal Conductivity , 2017 .

[28]  S. Nguyen,et al.  Thermal Conductivity of ZIF-8 Thin-Film under Ambient Gas Pressure. , 2017, ACS applied materials & interfaces.

[29]  Sangmin An,et al.  Nanophotonic Atomic Force Microscope Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale. , 2017, Nano letters.

[30]  Laurence J Young,et al.  Temperature Treatment of Highly Porous Zirconium-Containing Metal-Organic Frameworks Extends Drug Delivery Release. , 2017, Journal of the American Chemical Society.

[31]  Diego A. Gómez-Gualdrón,et al.  Application of Consistency Criteria To Calculate BET Areas of Micro- And Mesoporous Metal-Organic Frameworks. , 2016, Journal of the American Chemical Society.

[32]  T. Heine,et al.  Extension of the Universal Force Field for Metal-Organic Frameworks. , 2016, Journal of chemical theory and computation.

[33]  M. Kaviany,et al.  Anisotropic Lattice Thermal Conductivity and Suppressed Acoustic Phonons in MOF-74 from First Principles , 2015 .

[34]  Brian M. Foley,et al.  Thin Film Thermoelectric Metal–Organic Framework with High Seebeck Coefficient and Low Thermal Conductivity , 2015, Advanced materials.

[35]  T. B. Faust,et al.  Nanomedicine: MOFs deliver , 2015 .

[36]  P. Greaney,et al.  Relationship between thermal conductivity and framework architecture in MOF-5 , 2014 .

[37]  T. Heine,et al.  AuToGraFS: automatic topological generator for framework structures. , 2014, The journal of physical chemistry. A.

[38]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[39]  Hong-Cai Zhou,et al.  Methane storage in advanced porous materials. , 2012, Chemical Society reviews.

[40]  J. Khodadadi,et al.  Equilibrium molecular dynamics determination of thermal conductivity for multi-component systems , 2012 .

[41]  Jun Ni,et al.  MOF-5 composites exhibiting improved thermal conductivity , 2012 .

[42]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[43]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[44]  Maciej Haranczyk,et al.  Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials , 2012 .

[45]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[46]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[47]  Gang Chen,et al.  Polyethylene nanofibres with very high thermal conductivities. , 2010, Nature nanotechnology.

[48]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[49]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[50]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[51]  A Alec Talin,et al.  Stress-induced chemical detection using flexible metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[52]  M. O'keeffe,et al.  The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. , 2008, Accounts of chemical research.

[53]  A. McGaughey,et al.  Thermal conductivity of metal-organic framework 5 (MOF-5): Part I. Molecular dynamics simulations , 2007 .

[54]  Alan J. H. McGaughey,et al.  Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement , 2007 .

[55]  K. Goodson,et al.  Ordering Up the Minimum Thermal Conductivity of Solids , 2007, Science.

[56]  Y. Kawazoe,et al.  Highly controlled acetylene accommodation in a metal–organic microporous material , 2005, Nature.

[57]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[58]  A. Myers,et al.  Molecular simulation of adsorption: Gibbs dividing surface and comparison with experiment , 2001 .

[59]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[60]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[61]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[62]  J. S. Blakemore Semiconducting and other major properties of gallium arsenide , 1982 .