MedShapeNet - A Large-Scale Dataset of 3D Medical Shapes for Computer Vision

We present MedShapeNet, a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D surgical instrument models. Prior to the deep learning era, the broad application of statistical shape models (SSMs) in medical image analysis is evidence that shapes have been commonly used to describe medical data. Nowadays, however, state-of-the-art (SOTA) deep learning algorithms in medical imaging are predominantly voxel-based. In computer vision, on the contrary, shapes (including, voxel occupancy grids, meshes, point clouds and implicit surface models) are preferred data representations in 3D, as seen from the numerous shape-related publications in premier vision conferences, such as the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), as well as the increasing popularity of ShapeNet (about 51,300 models) and Princeton ModelNet (127,915 models) in computer vision research. MedShapeNet is created as an alternative to these commonly used shape benchmarks to facilitate the translation of data-driven vision algorithms to medical applications, and it extends the opportunities to adapt SOTA vision algorithms to solve critical medical problems. Besides, the majority of the medical shapes in MedShapeNet are modeled directly on the imaging data of real patients, and therefore it complements well existing shape benchmarks comprising of computer-aided design (CAD) models. MedShapeNet currently includes more than 100,000 medical shapes, and provides annotations in the form of paired data. It is therefore also a freely available repository of 3D models for extended reality (virtual reality - VR, augmented reality - AR, mixed reality - MR) and medical 3D printing. This white paper describes in detail the motivations behind MedShapeNet, the shape acquisition procedures, the use cases, as well as the usage of the online shape search portal: https://medshapenet.ikim.nrw/

Bjoern H Menze | Moon S Kim | David G. Ellis | M. Witjes | Ping Luo | M. Hatt | M. Urschler | M. Reyes | Edmond Boyer | C. Davatzikos | C. Grana | H. Lamecker | Dženan Zukić | J. Egger | Tom Kamiel Magda Vercauteren | A. Rekik | K. Tserpes | A. Lalande | F. Nensa | R. Frayne | V. Andrearczyk | Xiaojun Chen | Yannick Suter | A. Depeursinge | N. Heller | A. Sekuboyina | Kathrin Krieger | A. Campilho | M. Gunzer | Enrico Nasca | Antonio Pepe | J. Kleesiek | E. Garza-Villarreal | Jianning Li | C. Wachinger | Hongwei Li | Jun Ma | N. Shusharina | S. Beier | E. Vereecke | Constantin Seibold | Carlos A. Ferreira | H. Liebl | S. Gatidis | B. Paniagua | E. Audenaert | R. Souza | L. Rittner | Jianxu Chen | M. Aizenberg | M. Balzer | J. Shapey | R. Dorent | G. Melito | V. Badeli | T. Balducci | P. Hoyer | M. Fink | Michael Kamp | A. Nuernberger | P. Langenhuizen | Federico Bolelli | H. Salehi | T. Maal | Christina Gsaxner | Yuan Jin | A. Kujawa | Guilherme Aresta | S. Cornelissen | Yao Zhang | António Cunha | F. Jonske | Oliver Basu | Moritz Rempe | S. Chatterjee | E. D. L. Rosa | F. Hoelzle | M. Lindo | C. Krebs | R. Gharleghi | André Ferreira | V. Alves | Shireen Elhabian | A. Jaus | B. Puladi | A. Ben-Hamadou | Alexandra Brehmer | J. Pedrosa | Yuanfeng Ji | Jana Fragemann | S. Pujades | T. V. Leeuwen | J. Wasserthal | Luc Duong | F. Bahnsen | L. Podleska | Jan S. Kirschke | Gijs Luijten | D. Angeles-Valdez | Maximilian Loeffler | Luca Lumetti | A. Santos | Amr Abourayya | Jose A Garcia | A. R. Memon | Narmada Ambigapathy | Naida Solak | Patrich Ferndinand Christ | T. Kuestner | Rainer Roehrig | Amin Dada | Stanislav Malorodov | Fabian Hoerst | Lukas Heine | J. Keyl

[1]  Jae Won Choi,et al.  Unleashing the Strengths of Unlabeled Data in Pan-cancer Abdominal Organ Quantification: the FLARE22 Challenge , 2023, ArXiv.

[2]  R. Stiefelhagen,et al.  Towards Unifying Anatomy Segmentation: Automated Generation of a Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines , 2023, ArXiv.

[3]  L. Celi,et al.  A guide to sharing open healthcare data under the General Data Protection Regulation , 2023, Scientific data.

[4]  David G. Ellis,et al.  Towards clinical applicability and computational efficiency in automatic cranial implant design: An overview of the AutoImplant 2021 cranial implant design challenge , 2023, Medical Image Anal..

[5]  Moon S Kim,et al.  Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via Volumetric Pseudo-Labeling , 2023, ArXiv.

[6]  Edmond Boyer,et al.  3DTeethSeg'22: 3D Teeth Scan Segmentation and Labeling Challenge , 2023, ArXiv.

[7]  Stephan J. Garbin,et al.  BlendFields: Few-Shot Example-Driven Facial Modeling , 2023, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Ala I. Al-Fuqaha,et al.  Privacy-preserving artificial intelligence in healthcare: Techniques and applications , 2023, Comput. Biol. Medicine.

[9]  Helena R. Torres,et al.  Why is the Winner the Best? , 2023, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Chen Change Loy,et al.  CelebV-Text: A Large-Scale Facial Text-Video Dataset , 2023, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  A. Sowmya,et al.  Annotated computed tomography coronary angiogram images and associated data of normal and diseased arteries , 2023, Scientific Data.

[12]  C. Grana,et al.  Inferior Alveolar Canal Automatic Detection with Deep Learning CNNs on CBCTs: Development of a Novel Model and Release of Open-Source Dataset and Algorithm , 2023, Applied Sciences.

[13]  Menghan Xia,et al.  CodeTalker: Speech-Driven 3D Facial Animation with Discrete Motion Prior , 2023, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Anne L. Martel,et al.  Biomedical image analysis competitions: The state of current participation practice , 2022, ArXiv.

[15]  R. Wiest,et al.  The LUMIERE dataset: Longitudinal Glioblastoma MRI with expert RANO evaluation , 2022, Scientific data.

[16]  A. Schwing,et al.  SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation , 2022, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Yuan Gong,et al.  3D GAN Inversion with Facial Symmetry Prior , 2022, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  G. Shrimal,et al.  AI-based Medical Image Inspection for Patient’s Racial Identity Recognition , 2022, 2022 International Conference on Futuristic Technologies (INCOFT).

[19]  Edmond Boyer,et al.  Teeth3DS: a benchmark for teeth segmentation and labeling from intra-oral 3D scans , 2022, ArXiv.

[20]  B. Schölkopf,et al.  A whole-body FDG-PET/CT Dataset with manually annotated Tumor Lesions , 2022, Scientific Data.

[21]  J. Egger,et al.  Training β-VAE by Aggregating a Learned Gaussian Posterior with a Decoupled Decoder , 2022, MAD@MICCAI.

[22]  H. Hemmati,et al.  A domain adaptation benchmark for T1-weighted brain magnetic resonance image segmentation , 2022, Frontiers in Neuroinformatics.

[23]  J. Egger,et al.  The HoloLens in Medicine: A systematic Review and Taxonomy , 2022, Medical Image Anal..

[24]  D. Štern,et al.  Fast and Low-GPU-memory abdomen CT organ segmentation: The FLARE challenge , 2022, Medical Image Anal..

[25]  A. Philippakis,et al.  Silhouette images enable estimation of body fat distribution and associated cardiometabolic risk , 2022, npj Digital Medicine.

[26]  K. Jia,et al.  Masked Surfel Prediction for Self-Supervised Point Cloud Learning , 2022, ArXiv.

[27]  J. Egger,et al.  GAN-based generation of realistic 3D data: A systematic review and taxonomy , 2022, ArXiv.

[28]  Ping Luo,et al.  AMOS: A Large-Scale Abdominal Multi-Organ Benchmark for Versatile Medical Image Segmentation , 2022, NeurIPS.

[29]  Bjoern H Menze,et al.  ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset , 2022, Scientific data.

[30]  C. Grana,et al.  Improving Segmentation of the Inferior Alveolar Nerve through Deep Label Propagation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Benjamin Planche,et al.  SMPL-A: Modeling Person-Specific Deformable Anatomy , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  John L. Burns,et al.  AI recognition of patient race in medical imaging: a modelling study , 2022, The Lancet. Digital health.

[33]  Michael J. Black,et al.  OSSO: Obtaining Skeletal Shape from Outside , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  A. Skalski,et al.  Deep Learning-based Framework for Automatic Cranial Defect Reconstruction and Implant Modeling , 2022, Comput. Methods Programs Biomed..

[35]  J. Egger,et al.  Geometric modeling of aortic dissections through convolution surfaces , 2022, Medical Imaging.

[36]  E. Garza-Villarreal,et al.  The Mexican magnetic resonance imaging dataset of patients with cocaine use disorder: SUDMEX CONN , 2022, Scientific data.

[37]  G. Antoniou,et al.  A Statistical Shape Model of the Morphological Variation of the Infrarenal Abdominal Aortic Aneurysm Neck , 2022, Journal of clinical medicine.

[38]  S. Ooi,et al.  Automated segmentation of normal and diseased coronary arteries - The ASOCA challenge , 2022, Comput. Medical Imaging Graph..

[39]  N. Mitra,et al.  ShapeFormer: Transformer-based Shape Completion via Sparse Representation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Maria G. Baldeon Calisto,et al.  CrossMoDA 2021 challenge: Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation , 2022, Medical Image Anal..

[41]  J. Egger,et al.  AVT: Multicenter aortic vessel tree CTA dataset collection with ground truth segmentation masks , 2022, Data in brief.

[42]  I. Solaroglu,et al.  Tumor Cell Infiltration into the Brain in Glioblastoma: From Mechanisms to Clinical Perspectives , 2022, Cancers.

[43]  C. Wachinger,et al.  Hippocampal representations for deep learning on Alzheimer’s disease , 2021, Scientific Reports.

[44]  Dieter Schmalstieg,et al.  Inside-Out Instrument Tracking for Surgical Navigation in Augmented Reality , 2021, VRST.

[45]  John O. Prior,et al.  Head and neck tumor segmentation in PET/CT: The HECKTOR challenge , 2021, Medical Image Anal..

[46]  R. Stiefelhagen,et al.  Reference-guided Pseudo-Label Generation for Medical Semantic Segmentation , 2021, AAAI.

[47]  M. Koudstaal,et al.  The 3D skull 0–4 years: A validated, generative, statistical shape model , 2021, Bone reports.

[48]  Kaleem Siddiqi,et al.  Medial Spectral Coordinates for 3D Shape Analysis , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  J. Sonke,et al.  Recurrent Variational Network: A Deep Learning Inverse Problem Solver applied to the task of Accelerated MRI Reconstruction , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Mussarat Yasmin,et al.  Brain tumor detection and classification using machine learning: a comprehensive survey , 2021, Complex & Intelligent Systems.

[51]  J. Egger,et al.  MUG500+: Database of 500 high-resolution healthy human skulls and 29 craniotomy skulls and implants , 2021, Data in brief.

[52]  Jie Yang,et al.  Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[53]  Essa Yacoub,et al.  The Human Connectome Project: A retrospective , 2021, NeuroImage.

[54]  Marcelo H Ang,et al.  Voxel-based Network for Shape Completion by Leveraging Edge Generation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[55]  Jiwen Lu,et al.  PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[56]  Yizhou Yu,et al.  ME-PCN: Point Completion Conditioned on Mask Emptiness , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[57]  Adam Herout,et al.  Deep learning for cranioplasty in clinical practice: Going from synthetic to real patient data , 2021, Comput. Biol. Medicine.

[58]  Fabian Prasser,et al.  Privacy-preserving data sharing infrastructures for medical research: systematization and comparison , 2021, BMC Medical Informatics and Decision Making.

[59]  Nikolaos V. Tsekos,et al.  Deep Learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge , 2021, Medical Image Anal..

[60]  S. Ourselin,et al.  Segmentation of vestibular schwannoma from MRI, an open annotated dataset and baseline algorithm , 2021, Scientific Data.

[61]  B. Preim,et al.  Facial Feature Removal for Anonymization of Neurological Image Data , 2021, Current Directions in Biomedical Engineering.

[62]  Dieter Schmalstieg,et al.  Automatic skull defect restoration and cranial implant generation for cranioplasty , 2021, Medical Image Anal..

[63]  Christos Davatzikos,et al.  The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification , 2021, ArXiv.

[64]  Russell A. Poldrack,et al.  The spectrum of data sharing policies in neuroimaging data repositories , 2021, Human brain mapping.

[65]  Dieter Schmalstieg,et al.  AutoImplant 2020-First MICCAI Challenge on Automatic Cranial Implant Design , 2021, IEEE Transactions on Medical Imaging.

[66]  Adam P. Harrison,et al.  Deep Implicit Statistical Shape Models for 3D Medical Image Delineation , 2021, AAAI.

[67]  Thomas Baum,et al.  A computed tomography vertebral segmentation dataset with anatomical variations and multi-vendor scanner data , 2021, Scientific Data.

[68]  João Pedrosa,et al.  LNDb challenge on automatic lung cancer patient management , 2021, Medical Image Anal..

[69]  Sasank Chilamkurthy,et al.  SkullBreak / SkullFix – Dataset for automatic cranial implant design and a benchmark for volumetric shape learning tasks , 2021, Data in brief.

[70]  S. Strother,et al.  Multisite Comparison of MRI Defacing Software Across Multiple Cohorts , 2021, Frontiers in Psychiatry.

[71]  T. Bortfeld,et al.  Cross-Modality Brain Structures Image Segmentation for the Radiotherapy Target Definition and Plan Optimization , 2021, MICCAI.

[72]  Kerem Bölek,et al.  The effectiveness of the use of augmented reality in anatomy education: a systematic review and meta-analysis , 2021, Scientific Reports.

[73]  Rainer Stiefelhagen,et al.  Adaptiope: A Modern Benchmark for Unsupervised Domain Adaptation , 2021, 2021 IEEE Winter Conference on Applications of Computer Vision (WACV).

[74]  Jing Xiao,et al.  3D Graph Anatomy Geometry-Integrated Network for Pancreatic Mass Segmentation, Diagnosis, and Quantitative Patient Management , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[75]  Jens Petersen,et al.  nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation , 2020, Nature Methods.

[76]  J. Egger,et al.  Deep learning—a first meta-survey of selected reviews across scientific disciplines, their commonalities, challenges and research impact , 2020, PeerJ Comput. Sci..

[77]  D. Rubin,et al.  CT-ORG, a new dataset for multiple organ segmentation in computed tomography , 2020, Scientific Data.

[78]  Daniel L. Rubin,et al.  CT-ORG, a new dataset for multiple organ segmentation in computed tomography , 2020, Scientific Data.

[79]  R. Frayne,et al.  Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations , 2020, Frontiers in Neuroscience.

[80]  Congcong Wang,et al.  AbdomenCT-1K: Is Abdominal Organ Segmentation a Solved Problem? , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[81]  J. Egger,et al.  Medical Deep Learning - A systematic Meta-Review , 2020, ArXiv.

[82]  Enzo Ferrante,et al.  Cranial Implant Design via Virtual Craniectomy with Shape Priors , 2020, AutoImplant@MICCAI.

[83]  Mikhail Belyaev,et al.  First U-Net Layers Contain More Domain Specific Information Than The Last Ones , 2020, DART/DCL@MICCAI.

[84]  Enzo Ferrante,et al.  Self-supervised Skull Reconstruction in Brain CT Images with Decompressive Craniectomy , 2020, MICCAI.

[85]  Thomas Baum,et al.  A Vertebral Segmentation Dataset with Fracture Grading , 2020, Radiology. Artificial intelligence.

[86]  Stella X. Yu,et al.  3D Shape Reconstruction from Free-Hand Sketches , 2020, ECCV Workshops.

[87]  Matthias Zwicker,et al.  Fine-Grained 3D Shape Classification With Hierarchical Part-View Attention , 2020, IEEE Transactions on Image Processing.

[88]  V. Agnese,et al.  Statistical Shape Analysis of Ascending Thoracic Aortic Aneurysm: Correlation between Shape and Biomechanical Descriptors , 2020, Journal of personalized medicine.

[89]  Yohannes Kassahun,et al.  A2D2: Audi Autonomous Driving Dataset , 2020, ArXiv.

[90]  Alain Lalande,et al.  Emidec: A Database Usable for the Automatic Evaluation of Myocardial Infarction from Delayed-Enhancement Cardiac MRI , 2020, Data.

[91]  Jan S. Kirschke,et al.  Labeling Vertebrae with Two-dimensional Reformations of Multidetector CT Images: An Adversarial Approach for Incorporating Prior Knowledge of Spine Anatomy. , 2020, Radiology. Artificial intelligence.

[92]  Nadya Shusharina,et al.  Automated delineation of the clinical target volume using anatomically constrained 3D expansion of the gross tumor volume. , 2020, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[93]  Tao Tan,et al.  Automatic corneal nerve fiber segmentation and geometric biomarker quantification , 2020 .

[94]  Nicol'as P'erez de Olaguer,et al.  VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images , 2020, Medical Image Anal..

[95]  Yaozong Gao,et al.  The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 Challenge , 2019, Medical Image Anal..

[96]  Christina Gsaxner,et al.  Facial model collection for medical augmented reality in oncologic cranio-maxillofacial surgery , 2019, Scientific Data.

[97]  A. Campilho,et al.  LNDb: A Lung Nodule Database on Computed Tomography , 2019, ArXiv.

[98]  Christopher G Schwarz,et al.  Identification of Anonymous MRI Research Participants with Face-Recognition Software. , 2019, The New England journal of medicine.

[99]  Tanzila Saba,et al.  Brain tumor detection using statistical and machine learning method , 2019, Comput. Methods Programs Biomed..

[100]  Richard Frayne,et al.  Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks , 2019, Artif. Intell. Medicine.

[101]  Michael J. Black,et al.  Capture, Learning, and Synthesis of 3D Speaking Styles , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[102]  Jan Egger,et al.  Automated Computer-aided Design of Cranial Implants Using a Deep Volumetric Convolutional Denoising Autoencoder , 2019, WorldCIST.

[103]  S. Reuzé,et al.  The complexity of tumor shape, spiculatedness, correlates with tumor radiomic shape features , 2019, Scientific Reports.

[104]  Ronald M. Summers,et al.  A large annotated medical image dataset for the development and evaluation of segmentation algorithms , 2019, ArXiv.

[105]  Hao Chen,et al.  The Liver Tumor Segmentation Benchmark (LiTS) , 2019, Medical Image Anal..

[106]  Joan Bruna,et al.  Deep Geometric Prior for Surface Reconstruction , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[107]  D. Buckley Surfaces , 2018, Adhesives in Manufacturing.

[108]  Hans Lamecker,et al.  3D Shape Analysis for Coarctation of the Aorta , 2018, ShapeMI@MICCAI.

[109]  Martial Hebert,et al.  PCN: Point Completion Network , 2018, 2018 International Conference on 3D Vision (3DV).

[110]  Andreas Geiger,et al.  Learning 3D Shape Completion from Laser Scan Data with Weak Supervision , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[111]  Mert R. Sabuncu,et al.  Anatomical Priors in Convolutional Networks for Unsupervised Biomedical Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[112]  R. Steenbakkers,et al.  Geometric Image Biomarker Changes of the Parotid Gland Are Associated With Late Xerostomia. , 2017, International journal of radiation oncology, biology, physics.

[113]  Wei Wu,et al.  Large-Scale 3D Shape Reconstruction and Segmentation from ShapeNet Core55 , 2017, ArXiv.

[114]  Zhen Li,et al.  High-Resolution Shape Completion Using Deep Neural Networks for Global Structure and Local Geometry Inference , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[115]  Christos Davatzikos,et al.  Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features , 2017, Scientific Data.

[116]  C. Meinel,et al.  Deep Learning for Medical Image Analysis , 2017, ArXiv.

[117]  Richard Frayne,et al.  An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement , 2017, NeuroImage.

[118]  Chen Sun,et al.  Revisiting Unreasonable Effectiveness of Data in Deep Learning Era , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[119]  Laurens van der Maaten,et al.  Submanifold Sparse Convolutional Networks , 2017, ArXiv.

[120]  Matthias Nießner,et al.  Shape Completion Using 3D-Encoder-Predictor CNNs and Shape Synthesis , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[121]  Chad DeChant,et al.  Shape completion enabled robotic grasping , 2016, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[122]  Thomas Brox,et al.  3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation , 2016, MICCAI.

[123]  G. Biros,et al.  Imaging Surrogates of Infiltration Obtained Via Multiparametric Imaging Pattern Analysis Predict Subsequent Location of Recurrence of Glioblastoma. , 2016, Neurosurgery.

[124]  Klaus H. Maier-Hein,et al.  Deep MRI brain extraction: A 3D convolutional neural network for skull stripping , 2016, NeuroImage.

[125]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[126]  Brian B. Avants,et al.  The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) , 2015, IEEE Transactions on Medical Imaging.

[127]  Jeffrey N. Chiang,et al.  Optimized Brain Extraction for Pathological Brains (optiBET) , 2014, PloS one.

[128]  Shruti Gujral,et al.  Brain Tumor Detection based on Machine Learning Algorithms , 2014 .

[129]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[130]  Florian Jung,et al.  Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge , 2014, Medical Image Anal..

[131]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[132]  Jian Chen,et al.  Brain extraction using the watershed transform from markers , 2013, Front. Neuroinform..

[133]  Yun Tian,et al.  Automatic Sex Determination of Skulls Based on a Statistical Shape Model , 2013, Comput. Math. Methods Medicine.

[134]  D. Louis Collins,et al.  BEaST: Brain extraction based on nonlocal segmentation technique , 2012, NeuroImage.

[135]  Paul M. Thompson,et al.  Robust Brain Extraction Across Datasets and Comparison With Publicly Available Methods , 2011, IEEE Transactions on Medical Imaging.

[136]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[137]  Luc Van Gool,et al.  A 3-D Audio-Visual Corpus of Affective Communication , 2010, IEEE Transactions on Multimedia.

[138]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[139]  Hans-Peter Meinzer,et al.  Statistical shape models for 3D medical image segmentation: A review , 2009, Medical Image Anal..

[140]  Dragomir Anguelov,et al.  SCAPE: shape completion and animation of people , 2005, ACM Trans. Graph..

[141]  William M. Wells,et al.  Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation , 2004, IEEE Transactions on Medical Imaging.

[142]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[143]  Anders M. Dale,et al.  A hybrid approach to the Skull Stripping problem in MRI , 2001, NeuroImage.

[144]  R. Leahy,et al.  Magnetic Resonance Image Tissue Classification Using a Partial Volume Model , 2001, NeuroImage.

[145]  Jyrki Lötjönen,et al.  Automatic Reconstruction of 3D Geometry Using Projections and a Geometric Prior Model , 1999, MICCAI.

[146]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[147]  Shan Yang,et al.  TotalSegmentator: robust segmentation of 104 anatomical structures in CT images , 2022, ArXiv.

[148]  Hui Liu,et al.  A Geometry-Constrained Deformable Attention Network for Aortic Segmentation , 2022, MICCAI.

[149]  S. Durrleman,et al.  Progression Models for Imaging Data with Longitudinal Variational Auto Encoders , 2022, MICCAI.

[150]  John O. Prior,et al.  Overview of the HECKTOR Challenge at MICCAI 2022: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT , 2022, HECKTOR@MICCAI.

[151]  Mattia Di Bartolomeo,et al.  Deep Segmentation of the Mandibular Canal: a New 3D Annotated Dataset of CBCT Volumes , 2022, IEEE Access.

[152]  Costantino Grana,et al.  A Cone Beam Computed Tomography Annotation Tool for Automatic Detection of the Inferior Alveolar Nerve Canal , 2021, VISIGRAPP.

[153]  Stefan Zachow,et al.  Automated Virtual Reconstruction of Large Skull Defects using Statistical Shape Models and Generative Adversarial Networks , 2020, AutoImplant@MICCAI.

[154]  A. Lundervold,et al.  2D and 3D U-Nets for skull stripping in a large and heterogeneous set of head MRI using fastai , 2020 .

[155]  Adam Herout,et al.  Cranial Defect Reconstruction Using Cascaded CNN with Alignment , 2020, AutoImplant@MICCAI.

[156]  Florian Probst,et al.  Planning of skull reconstruction based on a statistical shape model combined with geometric morphometrics , 2017, International Journal of Computer Assisted Radiology and Surgery.

[157]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .