Coping with Our Cold Planet

Of all the natural stress conditions on our planet and in our solar system, cold is arguably the most widespread, at least from the perspective of mesophilic and thermophilic organisms. For instance, 90% of the Earth's oceans have a temperature of 5°C or less. When terrestrial habitats are included

[1]  Nicolas Coquelle,et al.  Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. , 2007, Journal of molecular biology.

[2]  K. Finster,et al.  Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway. , 2007, Environmental microbiology.

[3]  A. Boetius,et al.  Feast and famine — microbial life in the deep-sea bed , 2007, Nature Reviews Microbiology.

[4]  G. Cheng,et al.  Phylogenetic diversity of bacteria isolates from the Qinghai-Tibet Plateau permafrost region. , 2007, Canadian journal of microbiology.

[5]  Stefano Pascarella,et al.  Structural adaptation to low temperatures − analysis of the subunit interface of oligomeric psychrophilic enzymes , 2007, The FEBS journal.

[6]  C. Gualerzi,et al.  Cold-stress-induced de novo expression of infC and role of IF3 in cold-shock translational bias. , 2007, RNA.

[7]  Aurora Martínez,et al.  Structure of Phenylalanine Hydroxylase from Colwellia psychrerythraea 34H, a Monomeric Cold Active Enzyme with Local Flexibility around the Active Site and High Overall Stability* , 2007, Journal of Biological Chemistry.

[8]  Mason Inman The Dark and Mushy Side of A Frozen Continent , 2007, Science.

[9]  E. Papaleo,et al.  Optimization of electrostatics as a strategy for cold-adaptation: a case study of cold- and warm-active elastases. , 2007, Journal of molecular graphics & modelling.

[10]  M. Inouye,et al.  Complementation Analysis of the Cold-Sensitive Phenotype of the Escherichia coli csdA Deletion Strain , 2007, Journal of bacteriology.

[11]  C. McKay,et al.  Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. , 2007, Astrobiology.

[12]  F. Briani,et al.  Autogenous regulation of Escherichia coli polynucleotide phosphorylase during cold acclimation by transcription termination and antitermination , 2007, Molecular Genetics and Genomics.

[13]  Ji-Hyun Shin,et al.  The SsrA-SmpB Ribosome Rescue System Is Important for Growth of Bacillus subtilis at Low and High Temperatures , 2007, Journal of bacteriology.

[14]  L. Whyte,et al.  Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. , 2007, FEMS microbiology ecology.

[15]  D. Wagner,et al.  Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. , 2007, FEMS microbiology ecology.

[16]  J. Tiedje,et al.  Multi-locus real-time PCR for quantitation of bacteria in the environment reveals Exiguobacterium to be prevalent in permafrost. , 2007, FEMS microbiology ecology.

[17]  Y. Shouche,et al.  Molecular microbial diversity of a soil sample and detection of ammonia oxidizers from Cape Evans, Mcmurdo Dry Valley, Antarctica. , 2007, Microbiological research.

[18]  R. Alexander,et al.  Mutational Analysis of the Escherichia coli DEAD Box Protein CsdA , 2007, Journal of bacteriology.

[19]  Volkhard Helms,et al.  Protein dynamics tightly connected to the dynamics of surrounding and internal water molecules. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[20]  L. An,et al.  Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, northwestern China. , 2006, Research in microbiology.

[21]  Elena Papaleo,et al.  Flexibility and enzymatic cold-adaptation: a comparative molecular dynamics investigation of the elastase family. , 2006, Biochimica et biophysica acta.

[22]  James M Tiedje,et al.  Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods. , 2006, Astrobiology.

[23]  Dorothea K. Thompson,et al.  Global Transcriptome Analysis of the Cold Shock Response of Shewanellaoneidensis MR-1 and Mutational Analysis of Its ClassicalCold ShockProteins , 2006, Journal of bacteriology.

[24]  Ricardo Cavicchioli,et al.  Cold-adapted enzymes. , 2006, Annual review of biochemistry.

[25]  J. Deming,et al.  Modelled and measured dynamics of viruses in Arctic winter sea-ice brines. , 2006, Environmental microbiology.

[26]  R. Cavicchioli Cold-adapted archaea , 2006, Nature Reviews Microbiology.

[27]  G. Feller,et al.  Psychrophilic microorganisms: challenges for life , 2006, EMBO reports.

[28]  L. Whyte,et al.  Microbial ecology and biodiversity in permafrost , 2006, Extremophiles.

[29]  Rika Anderson,et al.  Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[30]  C. Scharf,et al.  Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal. , 2006, Microbiology.

[31]  M. Thomashow,et al.  Characterization of Exiguobacterium isolates from the Siberian permafrost. Description of Exiguobacterium sibiricum sp. nov. , 2006, Extremophiles.

[32]  J. Kuo,et al.  A first principles study on the structure of ice-VI: static distortion, molecular geometry, and proton ordering. , 2006, The journal of physical chemistry. B.

[33]  Younghoon Lee,et al.  Differential promoter usage of infA in response to cold shock in Escherichia coli , 2006, FEBS letters.

[34]  Mohamed A. Marahiel,et al.  Cold-Induced Putative DEAD Box RNA Helicases CshA and CshB Are Essential for Cold Adaptation and Interact with Cold Shock Protein B in Bacillus subtilis , 2006, Journal of bacteriology.

[35]  M. Deutscher,et al.  Elevation of RNase R in Response to Multiple Stress Conditions* , 2005, Journal of Biological Chemistry.

[36]  C. Fraser,et al.  The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  James M Tiedje,et al.  Biodiversity of cryopegs in permafrost. , 2005, FEMS microbiology ecology.

[38]  S. J. Gilmour,et al.  Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. , 2005, FEMS microbiology ecology.

[39]  K. Lindström,et al.  International Committee on Systematics of Prokaryotes; Subcommittee on the taxonomy of Agrobacterium and Rhizobium: Minutes of the meeting, 26 July 2004, Toulouse, France , 2005 .

[40]  I. Tanaka,et al.  Elucidation of stability determinants of cold-adapted monomeric isocitrate dehydrogenase from a psychrophilic bacterium, Colwellia maris, by construction of chimeric enzymes. , 2005, Microbiology.

[41]  E. Stackebrandt,et al.  Psychrobacter vallis sp. nov. and Psychrobacter aquaticus sp. nov., from Antarctica. , 2005, International journal of systematic and evolutionary microbiology.

[42]  M. Deutscher,et al.  An important role for RNase R in mRNA decay. , 2005, Molecular cell.

[43]  S. Shivaji,et al.  Psychrobacter salsus sp. nov. and Psychrobacter adeliensis sp. nov. isolated from fast ice from Adelie Land, Antarctica. , 2004, Systematic and applied microbiology.

[44]  P. A. Fields,et al.  Decreases in activation energy and substrate affinity in cold-adapted A4-lactate dehydrogenase: evidence from the Antarctic notothenioid fish Chaenocephalus aceratus. , 2004, Molecular biology and evolution.

[45]  A. J. Carpousis,et al.  The RNase E of Escherichia coli has at least two binding sites for DEAD‐box RNA helicases: functional replacement of RhlB by RhlE , 2004, Molecular microbiology.

[46]  R. Simons,et al.  Physical and functional interactions among RNase E, polynucleotide phosphorylase and the cold‐shock protein, CsdA: evidence for a ‘cold shock degradosome’ , 2004, Molecular microbiology.

[47]  M. Inouye,et al.  Genome-Wide Transcriptional Analysis of the Cold Shock Response in Wild-Type and Cold-Sensitive, Quadruple-csp-Deletion Strains of Escherichia coli , 2004, Journal of bacteriology.

[48]  Stefan Fischer,et al.  Structure, dynamics and reactions of protein hydration water. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[49]  G. Antranikian,et al.  Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen , 2004, Extremophiles.

[50]  S. Phadtare Recent developments in bacterial cold-shock response. , 2004, Current issues in molecular biology.

[51]  M. Dreyfus,et al.  CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. , 2004, Nucleic acids research.

[52]  Ruth Nussinov,et al.  Different Roles of Electrostatics in Heat and in Cold: Adaptation by Citrate Synthase , 2004, Chembiochem : a European journal of chemical biology.

[53]  C. Gualerzi,et al.  Preferential translation of cold-shock mRNAs during cold adaptation. , 2004, RNA.

[54]  G. Feller,et al.  Some like it cold: biocatalysis at low temperatures. , 2004, FEMS microbiology reviews.

[55]  R. Amann,et al.  Diversity and Structure of Bacterial Communities in Arctic versus Antarctic Pack Ice , 2003, Applied and Environmental Microbiology.

[56]  H. Mori,et al.  Cold shock induction of RNase R and its role in the maturation of the quality control mediator SsrA/tmRNA , 2003, Molecular microbiology.

[57]  C. Gualerzi,et al.  Transcriptional and post-transcriptional control of cold-shock genes. , 2003, Journal of molecular biology.

[58]  J. Guinea,et al.  Characterization of several Psychrobacter strains isolated from Antarctic environments and description of Psychrobacter luti sp. nov. and Psychrobacter fozii sp. nov. , 2003, International journal of systematic and evolutionary microbiology.

[59]  T. Schweder,et al.  Isolation and characterization of marine psychrophilic phage-host systems from Arctic sea ice , 2003, Extremophiles.

[60]  Pablo G. Debenedetti,et al.  Supercooled and glassy water , 2003 .

[61]  M. Deutscher,et al.  Quality control of ribosomal RNA mediated by polynucleotide phosphorylase and RNase R , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  K. Nealson,et al.  Reproduction and metabolism at − 10°C of bacteria isolated from Siberian permafrost , 2003 .

[63]  M. Marahiel,et al.  Bacterial Cold Shock Responses , 2003, Science progress.

[64]  H. Frauenfelder,et al.  Slaving: Solvent fluctuations dominate protein dynamics and functions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[65]  G. Makhatadze,et al.  Bacterial cold-shock proteins , 2002, Cellular and Molecular Life Sciences CMLS.

[66]  Sarah A. Teichmann,et al.  Principles of protein-protein interactions , 2002, ECCB.

[67]  G. Feller,et al.  Molecular basis of cold adaptation. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[68]  A. Goldberg,et al.  Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[69]  E. Stackebrandt,et al.  Exiguobacterium undae sp. nov. and Exiguobacterium antarcticum sp. nov. , 2002, International journal of systematic and evolutionary microbiology.

[70]  J. Deming,et al.  Psychrophiles and polar regions. , 2002, Current opinion in microbiology.

[71]  Stefano Pascarella,et al.  Comparative structural analysis of psychrophilic and meso‐ and thermophilic enzymes , 2002, Proteins.

[72]  K. Mavromatis,et al.  Exploring the role of a glycine cluster in cold adaptation of an alkaline phosphatase. , 2002, European journal of biochemistry.

[73]  Ruth Nussinov,et al.  Maximal stabilities of reversible two-state proteins. , 2002, Biochemistry.

[74]  T. Thomas,et al.  Thermodynamic activation properties of elongation factor 2 (EF-2) proteins from psychrotolerant and thermophilic Archaea , 2002, Extremophiles.

[75]  C. Gualerzi,et al.  Selective expression of the β‐subunit of nucleoid‐associated protein HU during cold shock in Escherichia coli , 2002, Molecular microbiology.

[76]  R. Wolfenden,et al.  Catalysis by entropic effects: the action of cytidine deaminase on 5,6-dihydrocytidine. , 2002, Biochemistry.

[77]  J. Imhoff,et al.  Phylogenetic Diversity of Numerically Important Arctic Sea-Ice Bacteria Cultured at Subzero Temperature , 2002, Microbial Ecology.

[78]  M. Deutscher,et al.  RNA quality control: degradation of defective transfer RNA , 2002, The EMBO journal.

[79]  M. Inouye,et al.  The Nucleic Acid Melting Activity of Escherichia coliCspE Is Critical for Transcription Antitermination and Cold Acclimation of Cells* , 2002, The Journal of Biological Chemistry.

[80]  R. Wolfenden,et al.  The depth of chemical time and the power of enzymes as catalysts. , 2001, Accounts of chemical research.

[81]  P. A. Fields,et al.  Review: Protein function at thermal extremes: balancing stability and flexibility. , 2001, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[82]  F. Tabbutt Water: A Matrix of Life, 2nd Edition (Franks, Felix) , 2001 .

[83]  Mark V Brown,et al.  A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). , 2001, FEMS microbiology ecology.

[84]  M. Inouye,et al.  Selective mRNA Degradation by Polynucleotide Phosphorylase in Cold Shock Adaptation in Escherichia coli , 2001, Journal of bacteriology.

[85]  G. Kochkina,et al.  [Micromycetes and actinobacteria under conditions of many years of natural cryopreservation]. , 2001, Mikrobiologiia.

[86]  M. Inouye,et al.  Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli , 2001, Molecular microbiology.

[87]  J. Ramos,et al.  Responses of Gram-negative bacteria to certain environmental stressors. , 2001, Current opinion in microbiology.

[88]  F. Dubail,et al.  Cold-Adapted β-Galactosidase from the Antarctic Psychrophile Pseudoalteromonas haloplanktis , 2001, Applied and Environmental Microbiology.

[89]  J. Imhoff,et al.  Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. , 2001, FEMS microbiology letters.

[90]  M. Inouye,et al.  Induction of CspA, an E. coli major cold‐shock protein, upon nutritional upshift at 37 °C , 2001 .

[91]  S Pascarella,et al.  Structural adaptation of enzymes to low temperatures. , 2001, Protein engineering.

[92]  G. Feller,et al.  Enzyme activity determination on macromolecular substrates by isothermal titration calorimetry: application to mesophilic and psychrophilic chitinases. , 2001, Biochimica et biophysica acta.

[93]  E. Delong,et al.  Archaeal dominance in the mesopelagic zone of the Pacific Ocean , 2001, Nature.

[94]  R. Amann,et al.  Quantitative Molecular Analysis of the Microbial Community in Marine Arctic Sediments (Svalbard) , 2001, Applied and Environmental Microbiology.

[95]  R. Simons,et al.  Cold‐temperature induction of Escherichia coli polynucleotide phosphorylase occurs by reversal of its autoregulation †‡ , 2001, Molecular microbiology.

[96]  S. Salzberg,et al.  DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae , 2000, Nature.

[97]  M. Inouye,et al.  Escherichia coli CspA-family RNA chaperones are transcription antiterminators. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[98]  G. Zaccai,et al.  How soft is a protein? A protein dynamics force constant measured by neutron scattering. , 2000, Science.

[99]  B. Devreese,et al.  Xylanase from the psychrophilic yeast Cryptococcus adeliae , 2000, Extremophiles.

[100]  P. Tortora,et al.  Transcriptional and post‐transcriptional control of polynucleotide phosphorylase during cold acclimation in Escherichia coli , 2000, Molecular microbiology.

[101]  K. Neuhaus,et al.  Restart of Exponential Growth of Cold-Shocked Yersinia enterocolitica Occurs after Down-Regulation ofcspA1/A2 mRNA , 2000, Journal of bacteriology.

[102]  S. Kathariou,et al.  Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments , 2000, Extremophiles.

[103]  R. Sauer,et al.  The SsrA–SmpB system for protein tagging, directed degradation and ribosome rescue , 2000, Nature Structural Biology.

[104]  William L. Woodley,et al.  Deep convective clouds with sustained supercooled liquid water down to -37.5 °C , 2000, Nature.

[105]  J. Bowman,et al.  Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov., and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of [Flavobacterium] salegens as Salegentibacter salegens gen. nov., comb. nov. , 2000, International journal of systematic and evolutionary microbiology.

[106]  N. Russell,et al.  Toward a molecular understanding of cold activity of enzymes from psychrophiles , 2000, Extremophiles.

[107]  P. Hamilton,et al.  Ice Shelf Microbial Ecosystems in the High Arctic and Implications for Life on Snowball Earth , 2000, Naturwissenschaften.

[108]  R. Nussinov,et al.  Electrostatic strengths of salt bridges in thermophilic and mesophilic glutamate dehydrogenase monomers , 2000, Proteins.

[109]  N. Willassen,et al.  Structural comparison of psychrophilic and mesophilic trypsins. Elucidating the molecular basis of cold-adaptation. , 2000, European journal of biochemistry.

[110]  T. Caldas,et al.  Chaperone Properties of Bacterial Elongation Factor EF-G and Initiation Factor IF2* , 2000, The Journal of Biological Chemistry.

[111]  Nedwell,et al.  Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. , 1999, FEMS microbiology ecology.

[112]  T. Atlung,et al.  Low-Temperature-Induced DnaA Protein Synthesis Does Not Change Initiation Mass in Escherichia coliK-12 , 1999, Journal of bacteriology.

[113]  P. Forterre,et al.  Control of DNA topology during thermal stress in hyperthermophilic archaea: DNA topoisomerase levels, activities and induced thermotolerance during heat and cold shock in Sulfolobus , 1999, Molecular microbiology.

[114]  J. de la Cruz,et al.  Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. , 1999, Trends in biochemical sciences.

[115]  Nan Wang,et al.  CspI, the Ninth Member of the CspA Family ofEscherichia coli, Is Induced upon Cold Shock , 1999, Journal of bacteriology.

[116]  M. Inouye,et al.  Characterization of Escherichia coli cspE, whose product negatively regulates transcription of cspA, the gene for the major cold shock protein , 1999, Molecular microbiology.

[117]  P. Jagtap,et al.  Adaptation to low temperature and regulation of gene expression in antarctic psychrotrophic bacteria , 1998, Journal of Biosciences.

[118]  G. Somero,et al.  Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[119]  J. Bowman,et al.  Pseudoalteromonas prydzensis sp. nov., a psychrotrophic, halotolerant bacterium form Antarctic sea ice. , 1998, International journal of systematic bacteriology.

[120]  K. Rudd,et al.  The vacB Gene Required for Virulence inShigella flexneri and Escherichia coli Encodes the Exoribonuclease RNase R* , 1998, The Journal of Biological Chemistry.

[121]  T. McMeekin,et al.  Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. , 1998, Microbiology.

[122]  E. Delong Archaeal Means and Extremes , 1998, Science.

[123]  G. Taylor,et al.  Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. , 1998, Structure.

[124]  D I Svergun,et al.  Protein hydration in solution: experimental observation by x-ray and neutron scattering. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[125]  J. Finney,et al.  The structure of a new phase of ice , 1998, Nature.

[126]  N. Russell Psychrophilic bacteria--molecular adaptations of membrane lipids. , 1997, Comparative biochemistry and physiology. Part A, Physiology.

[127]  C. Gualerzi,et al.  Role of Escherichia coli cspA promoter sequences and adaptation of translational apparatus in the cold shock response , 1997, Molecular and General Genetics MGG.

[128]  G. Feller,et al.  Psychrophilic enzymes: molecular basis of cold adaptation , 1997, Cellular and Molecular Life Sciences CMLS.

[129]  T. McMeekin,et al.  Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction. , 1997, International journal of systematic bacteriology.

[130]  T. McMeekin,et al.  Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from antarctic lacustrine and sea ice habitats. , 1997, International journal of systematic bacteriology.

[131]  A. Goldberg,et al.  Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[132]  D. Gilichinsky,et al.  Characterization of Viable Bacteria from Siberian Permafrost by 16S rDNA Sequencing , 1997, Microbial Ecology.

[133]  M. Inouye,et al.  CspA, the Major Cold-shock Protein of Escherichia coli, Is an RNA Chaperone* , 1997, The Journal of Biological Chemistry.

[134]  Ryusuke Inoue,et al.  Increase in negative supercoiling of plasmid DNA in Escherichia coli exposed to cold shock , 1997, Molecular microbiology.

[135]  M. Inouye,et al.  RbfA, a 30S ribosomal binding factor, is a cold‐shock protein whose absence triggers the cold‐shock response , 1996, Molecular microbiology.

[136]  T. Mizuno,et al.  A novel member of the cspA family of genes that is induced by cold shock in Escherichia coli , 1996, Journal of bacteriology.

[137]  M. Inouye,et al.  Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[138]  J. T. Staley,et al.  Biodiversity of gas vacuolate bacteria from Antarctic sea ice and water , 1995, Applied and environmental microbiology.

[139]  T. Kawula,et al.  Hsc66, an Hsp70 homolog in Escherichia coli, is induced by cold shock but not by heat shock , 1995, Journal of bacteriology.

[140]  N. Murata,et al.  Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. , 1995, The Biochemical journal.

[141]  E. Bremer,et al.  The nucleoid-associated DNA-binding protein H-NS is required for the efficient adaptation of Escherichia coli K-12 to a cold environment , 1994, Molecular and General Genetics MGG.

[142]  E. Delong,et al.  High abundance of Archaea in Antarctic marine picoplankton , 1994, Nature.

[143]  D. B. Nedwell,et al.  Influence of temperature on growth rate and competition between two psychrotolerant Antarctic bacteria: low temperature diminishes affinity for substrate uptake , 1994, Applied and environmental microbiology.

[144]  F. Payan,et al.  Stability and structural analysis of alpha-amylase from the antarctic psychrophile Alteromonas haloplanctis A23. , 1994, European journal of biochemistry.

[145]  D. Gardiol,et al.  DNA supercoiling and thermal regulation of unsaturated fatty acid synthesis in Bacillus subtilis , 1994, Molecular microbiology.

[146]  M. Inouye,et al.  Family of the major cold‐shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y‐box binding proteins , 1994, Molecular microbiology.

[147]  M. Inouye,et al.  The cold‐shock response — a hot topic , 1994, Molecular microbiology.

[148]  A. Wolffe,et al.  DNA gyrase, CS7.4, and the cold shock response in Escherichia coli , 1992, Journal of bacteriology.

[149]  S. Shivaji,et al.  The major carotenoid pigment of a psychrotrophic Micrococcus roseus strain: purification, structure, and interaction with synthetic membranes , 1991, Journal of bacteriology.

[150]  C. Gualerzi,et al.  Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[151]  N J Russell,et al.  Cold adaptation of microorganisms. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[152]  F. Franks,et al.  Water, temperature and life. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[153]  N. Murata,et al.  Synechocystis PCC6803 Mutants Defective in Desaturation of Fatty Acids , 1989 .

[154]  F. Neidhardt,et al.  Induction of proteins in response to low temperature in Escherichia coli , 1987, Journal of bacteriology.

[155]  I. Herskowitz,et al.  Interactions of bacteriophage and host macromolecules in the growth of bacteriophage lambda. , 1984, Microbiological reviews.

[156]  B. Honig,et al.  Stability of "salt bridges" in membrane proteins. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[157]  N. Russell Adaptation to temperature in bacterial membranes. , 1983, Biochemical Society transactions.

[158]  F. Stillinger Water Revisited , 1980, Science.

[159]  H. Jakubowski,et al.  Conformational changes during enzyme catalysis: role of water in the transition state. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[160]  R. Herbert,et al.  Growth characteristics of an obligately psychrophilic Vibrio sp. , 1977, Archives of Microbiology.

[161]  P. Mazur,et al.  The role of intracellular freezing in the death of cells cooled at supraoptimal rates. , 1977, Cryobiology.

[162]  C. Chothia,et al.  Principles of protein–protein recognition , 1975, Nature.

[163]  G. Lienhard,et al.  Enzymatic Catalysis and Transition-State Theory , 1973, Science.

[164]  I. Iost,et al.  Nucleic Acids Research Advance Access published August 25, 2006 SURVEY AND SUMMARY DEAD-box RNA helicases in Escherichia coli , 2006 .

[165]  F. Glöckner,et al.  Genome and proteome characterization of the psychrophilic Flavobacterium bacteriophage 11b , 2006, Extremophiles.

[166]  T. Fuchs,et al.  Life at Low Temperatures , 2006 .

[167]  G. Feller,et al.  Xylanases, xylanase families and extremophilic xylanases. , 2005, FEMS microbiology reviews.

[168]  A. J. Afzal,et al.  Innovative kinetic and thermodynamic analysis of a purified superactive xylanase from Scopulariopsis sp. , 2005, Applied biochemistry and biotechnology.

[169]  S. Shivaji,et al.  Growth and pigmentation in Sphingobacterium antarcticus, a psychrotrophic bacterium from Antarctica , 2004, Polar Biology.

[170]  U. Varshney,et al.  A physiological connection between tmRNA and peptidyl-tRNA hydrolase functions in Escherichia coli. , 2004, Nucleic acids research.

[171]  J. Gottschal Some reflections on microbial competitiveness among heterotrophic bacteria , 2004, Antonie van Leeuwenhoek.

[172]  D. Gilichinsky,et al.  Microbial life in permafrost. , 2004, Advances in space research : the official journal of the Committee on Space Research.

[173]  K. Nealson,et al.  Reproduction and metabolism at - 10 degrees C of bacteria isolated from Siberian permafrost. , 2003, Environmental microbiology.

[174]  D. Kelly,et al.  The prokaryotes: an evolving electronic resource for the microbiological community - , 2002 .

[175]  M. Inouye,et al.  Induction of CspA, an E. coli major cold-shock protein, upon nutritional upshift at 37 degrees C. , 2001, Genes to cells : devoted to molecular & cellular mechanisms.

[176]  D. Deamer,et al.  Eutectic phases in ice facilitate nonenzymatic nucleic acid synthesis. , 2001, Astrobiology.

[177]  J. Deming,et al.  A microscopic approach to investigate bacteria under in situ conditions in sea-ice samples , 2001, Annals of Glaciology.

[178]  Woodley,et al.  Deep convective clouds with sustained supercooled liquid water down to -37.5 degrees C , 2000, Nature.

[179]  N. Willassen,et al.  Cold adapted enzymes. , 2000, Biotechnology annual review.

[180]  J. T. Staley,et al.  Poles apart: biodiversity and biogeography of sea ice bacteria. , 1999, Annual review of microbiology.

[181]  Sung-Hou Kim,et al.  SEQUENCE, BIOCHEMICAL PROPERTIES, AND CRYSTAL STRUCTURE OF MALATE DEHYDROGENASE FROM A PSYCHROPHILE AQUASPIRILLIUM ARCTICUM* , 1999 .

[182]  C. Woese,et al.  Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of 'Flectobacillus glomeratus' as Polaribacter glomeratus comb. nov. , 1998, International journal of systematic bacteriology.

[183]  T. McMeekin,et al.  Psychrobacter glacincola sp. nov., a Halotolerant, Psychrophilic Bacterium Isolated from Antarctic Sea Ice , 1997 .

[184]  M. Inouye,et al.  Major cold shock protein of Escherichia coli. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[185]  S. R. Kushner,et al.  Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[186]  L. Hepler,et al.  Hydration Effects and Acid-Base Equilibria , 1973 .

[187]  Felix Franks,et al.  Water:A Comprehensive Treatise , 1972 .

[188]  F. Jona,et al.  Physics of Ice , 1972 .