Crystal structure of an alanine‐glyoxylate aminotransferase from Anabaena sp. at 1.70 Å resolution reveals a noncovalently linked PLP cofactor

Gye Won Han, Robert Schwarzenbacher, Rebecca Page, Lukasz Jaroszewski, Polat Abdubek, Eileen Ambing, Tanya Biorac, Jaume M. Canaves, Hsiu-Ju Chiu, Xiaoping Dai, Ashley M. Deacon, Michael DiDonato, Marc-André Elsliger, Adam Godzik, Carina Grittini, Slawomir K. Grzechnik, Joanna Hale, Eric Hampton, Justin Haugen, Michael Hornsby, Heath E. Klock, Eric Koesema, Andreas Kreusch, Peter Kuhn, Scott A. Lesley, Inna Levin, Daniel McMullan, Timothy M. McPhillips, Mitchell D. Miller, Andrew Morse, Kin Moy, Edward Nigoghossian, Jie Ouyang, Jessica Paulsen, Kevin Quijano, Ron Reyes, Eric Sims, Glen Spraggon, Raymond C. Stevens, Henry van den Bedem, Jeff Velasquez, Juli Vincent, Frank von Delft, Xianhong Wang, Bill West, Aprilfawn White, Guenter Wolf, Qingping Xu, Olga Zagnitko, Keith O. Hodgson, John Wooley, and Ian A. Wilson* The Joint Center for Structural Genomics Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, California The San Diego Supercomputer Center, La Jolla, California The Genomics Institute of the Novartis Research Foundation, San Diego, California The University of California, San Diego, La Jolla, California The Scripps Research Institute, La Jolla, California

Adam Godzik | Henry van den Bedem | Slawomir K. Grzechnik | Joanna Hale | Kin Moy | Rebecca Page | Guenter Wolf | Qingping Xu | Andrew Morse | Bill West | Mitchell D. Miller | Frank von Delft | Peter Kuhn | Lukasz Jaroszewski | Olga Zagnitko | Jie Ouyang | Glen Spraggon | Andreas Kreusch | Tanya Biorac | Daniel McMullan | A. Godzik | A. Deacon | K. Hodgson | R. Stevens | R. Schwarzenbacher | T. McPhillips | I. Wilson | P. Kuhn | L. Jaroszewski | F. von Delft | Eric Koesema | H. van den Bedem | G. Spraggon | I. Levin | R. Page | S. Lesley | A. Kreusch | H. Klock | D. Mcmullan | J. Vincent | M. Elsliger | J. Wooley | X. Dai | J. Ouyang | O. Zagnitko | Qingping Xu | H. Chiu | Polat Abdubek | Eileen Ambing | Joanna Hale | J. Haugen | Andrew T. Morse | Edward Nigoghossian | Jessica E. Paulsen | R. Reyes | A. White | Guenter Wolf | C. Grittini | M. Didonato | Michael Hornsby | Juli Vincent | John Wooley | Robert Schwarzenbacher | Polat Abdubek | Eileen Ambing | Xiaoping Dai | Michael DiDonato | Carina Grittini | Eric Hampton | Justin Haugen | Michael Hornsby | Eric Koesema | Edward Nigoghossian | Jessica Paulsen | Kevin Quijano | Ron Reyes | Jeff Velasquez | Aprilfawn White | Xianhong Wang | E. Hampton | K. Moy | Kevin Quijano | J. Velasquez | Inna Levin | Mitchell D. Miller | Hsiu‐Ju Chiu | Ashley M. Deacon | Marc‐André Elsliger | Slawomir K. Grzechnik | Heath E. Klock | Scott A. Lesley | Raymond C. Stevens | Keith O. Hodgson | Ian A. Wilson | Gye Won Han | Jaume M. Canaves | Timothy M. McPhillips | Eric Sims | T. Biorac | Eric Sims | Xianhong Wang | B. West | J. Cànaves | Gye Won Han | Jeff Velasquez

[1]  D S Moss,et al.  Error estimates of protein structure coordinates and deviations from standard geometry by full-matrix refinement of gammaB- and betaB2-crystallin. , 1998, Acta crystallographica. Section D, Biological crystallography.

[2]  Y. Suzuki,et al.  Purification and characterization of the active serine: pyruvate aminotransferase of rat liver mitochondria expressed in Escherichia coli. , 1989, Journal of biochemistry.

[3]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[4]  L. Pearl,et al.  Crystal structure of alanine:glyoxylate aminotransferase and the relationship between genotype and enzymatic phenotype in primary hyperoxaluria type 1. , 2003, Journal of molecular biology.

[5]  C. Sander,et al.  Dali: a network tool for protein structure comparison. , 1995, Trends in biochemical sciences.

[6]  Adam Godzik,et al.  In search for more accurate alignments in the twilight zone , 2002, Protein science : a publication of the Protein Society.

[7]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[8]  Earl W. Cornell,et al.  An approach to rapid protein crystallization using nanodroplets , 2002 .

[9]  P. Purdue,et al.  A glycine-to-glutamate substitution abolishes alanine:glyoxylate aminotransferase catalytic activity in a subset of patients with primary hyperoxaluria type 1. , 1992, Genomics.

[10]  George M Sheldrick,et al.  Substructure solution with SHELXD. , 2002, Acta crystallographica. Section D, Biological crystallography.

[11]  David S. Moss,et al.  Error Estimates of Protein Structure Coordinates and Deviations from Standard Geometry by Full-Matrix Refinement of γB- and βB2-Crystallin , 1998 .

[12]  G Vriend,et al.  WHAT IF: a molecular modeling and drug design program. , 1990, Journal of molecular graphics.

[13]  Adam Godzik,et al.  Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Richard J Morris,et al.  ARP/wARP and automatic interpretation of protein electron density maps. , 2003, Methods in enzymology.

[15]  Y. Takada,et al.  Characteristics of hepatic alanine-glyoxylate aminotransferase in different mammalian species. , 1978, The Biochemical journal.

[16]  G. Petsko,et al.  Crystal structure of a D-amino acid aminotransferase: how the protein controls stereoselectivity. , 1995, Biochemistry.

[17]  Ian W. Davis,et al.  Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.