Matrix Model of Forest Dynamics: An Overview and Outlook

The Matrix model uses transition matrices to predict future plant and animal population structures. Having been used to study the dynamics of forests all over the world, the Matrix model is thriving in forestry, with applications covering a wide array of areas. Despite its extensive application in forestry, the Matrix model is still suffering from a lack of due attention and appropriate understanding, especially on its advantages and limitations in comparison with those of other forest dynamics models. To facilitate further research and applications, a synthetic review of Matrix models is provided here with an emphasis on its mathematical properties and relationship with other forest dynamics models. In this article, we first introduce the general structure of Matrix models and its representation of forest dynamics components, i.e., upgrowth, mortality, and recruitment. Then, we summarize key properties of Matrix models, including basic assumptions, density dependence, size class width and time step, and the estimation of forest dynamics components will be summarized. Next, we evaluate advantages and limitations of the Matrix model and its relationship with other forest dynamics models. Finally, we share our perspective on the major challenges and future outlooks of Matrix models. FOR .S CI. 59(3):359-378.

[1]  W. Hoffmann FIRE AND POPULATION DYNAMICS OF WOODY PLANTS IN A NEOTROPICAL SAVANNA: MATRIX MODEL PROJECTIONS , 1999 .

[2]  John Vandermeer,et al.  Choosing category size in a stage projection matrix , 2004, Oecologia.

[3]  Dale S. Solomon,et al.  A two-stage matrix model for predicting growth of forest stands in the Northeast , 1986 .

[4]  K. Skog,et al.  Growth model for uneven-aged loblolly pine stands : simulations and management implications , 1998 .

[5]  N. Picard,et al.  Influence of estimators of the vital rates in the stock recovery rate when using matrix models for tropical rainforests , 2008 .

[6]  V. Favrichon Modèle matriciel déterministe en temps dicret. Application à l'étude de la dynamique d'un peuplement forestier tropicale humide (Guyane Française) , 1995 .

[7]  P. Legendre Spatial Autocorrelation: Trouble or New Paradigm? , 1993 .

[8]  A. Islas Aprovechamiento sostenible de madera de Cordia alliodora y Cedrela odorata de regeneración natural en cacaotales y bananales de indígenas de Talamanca, Costa Rica , 2001 .

[9]  S. Tuljapurkar Population dynamics in variable environments. II. Correlated environments, sensitivity analysis and dynamics , 1982 .

[10]  T. Nakashizuka Population dynamics of coniferous and broad‐leaved trees in a Japanese temperate mixed forest , 1991 .

[11]  Edinson Muñoz,et al.  Dinámica poblacional de la palma Euterpe oleracea (Arecaceae) en bosques inundables del Chocó, Pacífico colombiano , 2009 .

[12]  D. O. Logofet Convexity in projection matrices: Projection to a calibration problem , 2008 .

[13]  Zhanqing Hao,et al.  Vertical structure and spatial associations of dominant tree species in an old-growth temperate forest , 2007 .

[14]  J. R. Wallis,et al.  Some ecological consequences of a computer model of forest growth , 1972 .

[15]  G. Decocq,et al.  PRUNUS: a spatially explicit demographic model to study plant invasions in stochastic, heterogeneous environments , 2010, Biological Invasions.

[16]  P. T. Manders,et al.  A transition matrix model of the population dynamics of the Clanwilliam cedar (Widdringtonia cedarbergensis) in natural stands subject to fire , 1987 .

[17]  N. Picard,et al.  Asymptotic Distribution of Density-Dependent Stage-Grouped Population Dynamics Models , 2008, Acta biotheoretica.

[18]  N. Keyfitz Reconciliation of Population Models: Matrix, Integral Equation and Partial Fraction , 1967 .

[19]  Qingyu Hao,et al.  Determining the optimal selective harvest strategy for mixed-species stands with a transition matrix growth model , 2005, New Forests.

[20]  Joseph Buongiorno,et al.  Predicting the growth of stands of trees of mixed species and size: A matrix model for Norway , 2008 .

[21]  F. Hampel The Influence Curve and Its Role in Robust Estimation , 1974 .

[22]  S. Ellner,et al.  Integral Projection Models for Species with Complex Demography , 2006, The American Naturalist.

[23]  Donald E. Hooley Collapsed Matrices with (Almost) the Same Eigenstuff , 2000 .

[24]  Leo A. Goodman,et al.  On the Reconciliation of Mathematical Theories of Population Growth , 1967 .

[25]  J. Osho Modelling the tree population dynamics of the most abundant species in a Nigerian tropical rain forest , 1996 .

[26]  D. Zarin,et al.  Population dynamics and management of Amazon tidal floodplain forests: links to the past, present and future. , 2011 .

[27]  Taneli Kolström,et al.  Modelling the development of an uneven‐aged stand of Picea abies , 1993 .

[28]  D. DeAngelis,et al.  New Computer Models Unify Ecological TheoryComputer simulations show that many ecological patterns can be explained by interactions among individual organisms , 1988 .

[29]  Changhui Peng,et al.  Growth and yield models for uneven-aged stands: past, present and future , 2000 .

[30]  Robert Van Hulst,et al.  Vegetation dynamics or ecosystem dynamics: Dynamic sufficiency in succession theory , 1980, Vegetatio.

[31]  N. Enright,et al.  A matrix population model analysis for the tropical tree, Araucaria cunninghamii , 1991 .

[32]  T. Ticktin,et al.  What do matrix population models reveal about the sustainability of non‐timber forest product harvest? , 2011 .

[33]  Robert P Freckleton,et al.  Distributions of Habitat Suitability and the Abundance‐Occupancy Relationship , 2005, The American Naturalist.

[34]  M. B. Usher,et al.  Modelling ecological succession, with particular reference to Markovian models , 1981, Vegetatio.

[35]  Jerome K. Vanclay,et al.  Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests , 1994 .

[36]  Kirk A. Moloney,et al.  A generalized algorithm for determining category size , 1986, Oecologia.

[37]  E. Rykiel,et al.  Comparison of Markovian matrix models of a primary successional plant community , 1998 .

[38]  D. Rogers,et al.  A semi-empirical growth estimation method for matrix models of endangered species , 2006 .

[39]  T. F. Stepka,et al.  MODELAGEM DA DINÂMICA E PROGNOSE DA ESTRUTURA DIAMÉTRICA DE UMA FLORESTA OMBRÓFILA MISTA POR MEIO DE MATRIZ DE TRANSIÇÃO E RAZÃO DE MOVIMENTAÇÃO , 2008 .

[40]  D. Daley Bias in estimating the Malthusian parameter for Leslie matrices , 1979 .

[41]  Joseph Buongiorno,et al.  Growth and yield of all-aged Douglas-fir western hemlock forest stands: a matrix model with stand diversity effects , 2005 .

[42]  Roberto Salguero-Gómez,et al.  Matrix projection models meet variation in the real world , 2010 .

[43]  Gregory S. Biging,et al.  Evaluation of Competition Indices in Individual Tree Growth Models , 1995, Forest Science.

[44]  P. Zuidema Demography of exploited tree species in the Bolivian Amazon , 2000 .

[45]  A. Bah,et al.  Fuelwood harvesting in Niger and a generalization of Faustmann's formula. , 2005, Comptes rendus biologies.

[46]  Michel Loreau,et al.  Succession in mixed boreal forest of Russia: Markov models and non-Markov effects , 2001 .

[47]  Nicolas Picard,et al.  Robustness of the estimators of transition rates for size-classified matrix models , 2007, Comput. Stat. Data Anal..

[48]  Afonso Figueiredo Filho,et al.  PREDIÇÃO DA ESTRUTURA DIAMÉTRICA DE ESPÉCIES COMERCIAIS DE TERRA FIRME DA AMAZÔNIA POR MEIO DE MATRIZ DE TRANSIÇÃO , 2002 .

[49]  N. Picard,et al.  Estimator of upgrowth transition rates for size-classified matrix from small samples , 2007 .

[50]  Toshihiro Yamada,et al.  Dynamic steady state of patch-mosaic tree size structure of a mixed dipterocarp forest regulated by local crowding , 2001, Ecological Research.

[51]  P. H. Leslie On the use of matrices in certain population mathematics. , 1945, Biometrika.

[52]  C. R. Sanquetta ARAUSIS: Sistema de simulação para manejo sustentável de florestas de Araucária , 1999 .

[53]  Joseph S. Meyer,et al.  Estimating Uncertainty in Population Growth Rates: Jackknife vs. Bootstrap Techniques , 1986 .

[54]  V. Favrichon Apports d'un modèle démographique plurispécifique pour l'étude des relations diversité / dynamique en forêt tropicale guyanaise , 1998 .

[55]  R. Monserud,et al.  Estimation and Application of a Growth and Yield Model for Uneven-Aged Mixed Conifer Stands in California , 2005 .

[56]  M. Usher,et al.  Markovian approaches to ecological succession , 1979 .

[57]  W. Oechel,et al.  Observational Evidence of Recent Change in the Northern High-Latitude Environment , 2000 .

[58]  R. Gittins,et al.  Trend-Surface Analysis of Ecological Data , 1968 .

[59]  Madhur Anand,et al.  The use of matrix models to detect natural and pollution-induced forest gradients , 2003 .

[60]  Joseph Buongiorno,et al.  Long- and short-term effects of alternative cutting regimes on economic returns and ecological diversity in mixed-species forests , 1993 .

[61]  D. Carter,et al.  Multinomial logit estimation of a matrix growth model for tropical dry forests of eastern Bolivia , 2006 .

[62]  J. Vincent,et al.  Promoting Better Logging Practices in Tropical Forests , 1998 .

[63]  Lin Jiang,et al.  Red environmental noise and the appearance of delayed density dependence in age–structured populations , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[64]  D. O. Logofet,et al.  The mathematics of Markov models: what Markov chains can really predict in forest successions. , 2000 .

[65]  Joseph Buongiorno,et al.  Geographic extension of an uneven-aged, multi-species matrix growth model for northern hardwood forests , 1999 .

[66]  Eufrázio de Souza Santos,et al.  Comparação de métodos de prognose da estrutura diamétrica de uma floresta estacional semidecidual secundária , 2004 .

[67]  C. R. Sanquetta,et al.  Matriz de transição para simulação da dinâmica de florestas naturais sob diferentes intensidades de corte. , 1996 .

[68]  Frithjof Lutscher,et al.  Spatially-explicit matrix models , 2004 .

[69]  Pierre Bellefleur,et al.  Markov models of forest-type secondary succession in coastal British Columbia , 1981 .

[70]  F. Houllier,et al.  A renewal-equation approach to the dynamics of stage-grouped populations , 1986 .

[71]  T. Kohyama Simulating Stationary Size Distribution of Trees in Rain Forests , 1991 .

[72]  Terry P. Harrison,et al.  A generalized approach to the use of matrix growth models , 1985 .

[73]  Robert R. Sokal,et al.  Approximate analysis of variance of spatially autocorrelated regional data , 1990 .

[74]  Pieter A. Zuidema,et al.  Integral Projection Models for trees: a new parameterization method and a validation of model output , 2010 .

[75]  Shaye E. Sable,et al.  A comparison of individual-based and matrix projection models for simulating yellow perch population dynamics in Oneida Lake, New York, USA , 2008 .

[76]  N. Higuchi,et al.  Projeção da dinâmica da floresta natural de Terra-firme, região de Manaus-AM, com o uso da cadeia de transição probabilística de Markov , 2007 .

[77]  Elena R. Alvarez-Buylla,et al.  Sustainable Harvesting of Tropical Trees: Demography and Matrix Models of Two Palm Species in Mexico , 1995 .

[78]  T. Ticktin,et al.  Effects of Harvest of Nontimber Forest Products and Ecological Differences between Sites on the Demography of African Mahogany , 2010, Conservation biology : the journal of the Society for Conservation Biology.

[79]  P. Zuidema,et al.  Combining dendrochronology and matrix modelling in demographic studies: An evaluation for Juniperus procera in Ethiopia , 2005 .

[80]  H. Jacquemyn,et al.  Demographic effects of extreme weather events on a short‐lived calcareous grassland species: stochastic life table response experiments , 2010 .

[81]  J. Buongiorno,et al.  Economic Harvesting of Uneven-Aged Northern Hardwood Stands Under Risk: A Markovian Decision Model , 1987 .

[82]  Elena R. Alvarez-Buylla,et al.  Finding Confidence Limits on Population Growth Rates: Three Real Examples Revised , 1994 .

[83]  J. Terborgh,et al.  Tropical forest tree mortality, recruitment and turnover rates: calculation, interpretation and comparison when census intervals vary , 2004 .

[84]  Robert P. Freckleton,et al.  Predicting the impacts of harvesting using structured population models: the importance of density‐dependence and timing of harvest for a tropical palm tree , 2003 .

[85]  Stephen L. Rathbun,et al.  The Population Dynamics of a Long-Lived Conifer (Pinus palustris) , 1988, The American Naturalist.

[86]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[87]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[88]  K. Shimatani,et al.  Describing size-related mortality and size distribution by nonparametric estimation and model selection using the Akaike Bayesian Information Criterion , 2008, Ecological Research.

[89]  B. Freedman,et al.  Planting trees for carbon credits: a discussion of context, issues, feasibility, and environmental benefits , 1996 .

[90]  Annabel Porté,et al.  Modelling mixed forest growth: a review of models for forest management , 2002 .

[91]  J. Buongiorno,et al.  Non‐linear matrix modeling of forest growth with permanent plot data: The case of uneven‐aged Douglas‐fir stands , 2003 .

[92]  Joseph Buongiorno,et al.  MANAGING A TROPICAL RAINFOREST FOR TIMBER, CARBON STORAGE AND TREE DIVERSITY , 1997 .

[93]  S. Kant,et al.  Forest-level analyses of uneven-aged hardwood forests , 2008 .

[94]  J. Buongiorno,et al.  Decision Methods for Forest Resource Management , 2003 .

[95]  T. Kohyama Simulation of the Structural Development of Warm-Temperate Rain Forest Stands , 1989 .

[96]  N. Picard,et al.  Asymptotic distribution of stage-grouped population models. , 2006, Mathematical biosciences.

[97]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[98]  Matthias Dobbertin,et al.  A Comparison of Distance-Dependent Competition Measures for Height and Basal Area Growth of Individual Conifer Trees , 1992, Forest Science.

[99]  E. G. Lewis On the Generation and Growth of a Population , 1977 .

[100]  H. Caswell Matrix population models : construction, analysis, and interpretation , 2001 .

[101]  J. Buongiorno,et al.  A Growth and Yield Model for Naturally-Regenerated Mixed Shortleaf Pine Forests in the Southern United States of America , 2004 .

[102]  Jingjing Liang,et al.  Dynamics and management of Alaska boreal forest: An all-aged multi-species matrix growth model , 2010 .

[103]  Joseph Buongiorno,et al.  A matrix model of uneven-aged forest management. , 1980 .

[104]  E. Álvarez-Buylla Density Dependence and Patch Dynamics in Tropical Rain Forests: Matrix Models and Applications to a Tree Species , 1994, The American Naturalist.

[105]  V. Favrichon Modélisation en forêt naturelle : Les modèles à compartiments comme outils d'aide à l'aménagement forestier , 1996 .

[106]  Nicolas Picard,et al.  Approximating spatial interactions in a model of forest dynamics as a means of understanding spatial patterns , 2006 .

[107]  Nicolas Picard,et al.  Clustering species using a model of population dynamics and aggregation theory , 2010 .

[108]  Joseph Buongiorno,et al.  Fixed versus variable-parameter matrix models of forest growth: the case of maple-birch forests , 1997 .

[109]  J. McGraw,et al.  Evaluating the use of remotely sensed data in matrix population modeling for eastern hemlock (Tsuga canadensis L.) , 2005 .

[110]  Joseph Buongiorno,et al.  Effects of alternative management regimes on forest stand structure, species composition, and income: a model for the Italian Dolomites , 1996 .

[111]  R. Stavins,et al.  Experience with Market-Based Environmental Policy Instruments , 2002 .

[112]  I. L. Torres,et al.  ESTIMACIÓN DEL APROVECHAMIENTO MÁXIMO SOSTENIBLE Y DISTRIBUCIÓN DIAMÉTRICA ESTABLE DE MASAS IRREGULARES DE Pinus nigra MEDIANTE MODELOS MATRICIALES , 2008 .

[113]  V. Favrichon,et al.  Modeling the dynamics and species composition of a tropical mixed-species uneven-aged natural forest : Effects of alternative cutting regimes , 1998 .

[114]  H. Bruner,et al.  A Markov Chain Approach to the Prediction of Diameter Distributions in Uneven-aged Forest Stands , 1973 .

[115]  Hal Caswell,et al.  DEMOGRAPHY AND DISPERSAL: CALCULATION AND SENSITIVITY ANALYSIS OF INVASION SPEED FOR STRUCTURED POPULATIONS , 2000 .

[116]  Roberto Salguero-Gómez,et al.  Matrix Dimensions Bias Demographic Inferences: Implications for Comparative Plant Demography , 2010, The American Naturalist.

[117]  Joseph Buongiorno,et al.  MANAGEMENT OF MIXED-SPECIES, UNEVEN-AGED FORESTS IN THE FRENCH JURA: FROM STOCHASTIC GROWTH AND PRICE MODELS TO DECISION TABLES , 2005 .

[118]  D. Bowman,et al.  Fire-Stick Forestry: A Matrix Model in Support of Skilful Fire Management of Callitris intratropica R. T. Baker by North Australian Aborigenes , 1994 .

[119]  B. Michie,et al.  A matrix model of oak-hickory stand management and valuing forest land , 1986 .

[120]  Joseph Buongiorno,et al.  A multi-species, density-dependent matrix growth model to predict tree diversity and income in northern hardwood stands , 1996 .

[121]  Steven F. Railsback,et al.  Individual-based modeling and ecology , 2005 .

[122]  C. Hunter,et al.  Sensitivity analysis of equilibrium in density‐dependent matrix population models , 2004 .

[123]  Hal Caswell,et al.  Elasticity: The Relative Contribution of Demographic Parameters to Population Growth Rate , 1986 .

[124]  Fanrui Meng,et al.  A transition matrix growth model for uneven-aged mixed-species forests in the Changbai Mountains, northeastern China , 2005, New Forests.

[125]  Shripad Tuljapurkar,et al.  Population dynamics in variable environments I. Long-run growth rates and extinction , 1980 .

[126]  Mo Zhou,et al.  Mapping forest dynamics under climate change: A matrix model , 2011 .

[127]  M. Yokozawa,et al.  Effects of Physiological and Environmental Variations on Size-Structure Dynamics in Plant Populations , 1994 .

[128]  M. Usher,et al.  A Matrix Approach to the Management of Renewable Resources, with Special Reference to Selection Forests , 1966 .

[129]  Claudia Álvarez Aquino Simulación experimental del impacto de la tala selectiva en la viabilidad de población de dos especies nativas de bosque mesófilo de montaña , 2006 .

[130]  Mark Rees,et al.  Integral projection models perform better for small demographic data sets than matrix population models: a case study of two perennial herbs. , 2009 .

[131]  F. Houllier,et al.  Sampling properties of the asymptotic behavior of age- or stage-grouped population models. , 1989, Mathematical biosciences.

[132]  T. W. Anderson,et al.  Statistical Inference about Markov Chains , 1957 .

[133]  A. Mäkelä,et al.  Comparison of Distance-Dependent and Distance-Independent Stand Growth Models—Is Perfect Aggregation Possible? , 2006, Forest Science.

[134]  Joseph Buongiorno,et al.  Generalization of Faustmann's Formula for Stochastic Forest Growth and Prices with Markov Decision Process Models , 2001 .

[135]  Kiwako S. Araki,et al.  Matrix models using fine size classes and their application to the population dynamics of tree species: Bayesian non-parametric estimation , 2007 .

[136]  Joseph Buongiorno,et al.  Simulating options for carbon sequestration through improved management of a lowland tropical rainforest , 1997, Environment and Development Economics.

[137]  Joseph Buongiorno,et al.  Tree Size Diversity and Economic Returns in Uneven-Aged Forest Stands , 1994 .

[138]  J. Buongiorno,et al.  Effects of stochastic interest rates in decision making under risk: A Markov decision process model for forest management , 2011 .

[139]  V. Grimm Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? , 1999 .

[140]  S. Tuljapurkar,et al.  An uncertain life: demography in random environments. , 1989, Theoretical population biology.

[141]  P. Adler,et al.  Can life‐history traits predict the response of forb populations to changes in climate variability? , 2010 .

[142]  Sean M. McMahon,et al.  Overcoming data sparseness and parametric constraints in modeling of tree mortality: a new nonparametric Bayesian model , 2009 .

[143]  Jingjing Liang,et al.  A geospatial model of forest dynamics with controlled trend surface , 2010 .

[144]  R. Atyi,et al.  Synthesis and significance of the results of the research in management and economics for the design of a forest management plan , 1999 .

[145]  D. Burslem,et al.  The interpretation and misinterpretation of mortality rate measures , 1995 .

[146]  Guillermo A. Mendoza,et al.  A transition matrix forest growth model for evaluating alternative harvesting schemes in Indonesia , 1986 .

[147]  E. Álvarez-Buylla,et al.  DEMOGRAPHIC AND GENETIC MODELS IN CONSERVATION BIOLOGY: Applications and Perspectives for Tropical Rain Forest Tree Species , 1996 .

[148]  A Umr Development of Matrix Growth Model for Larch-Spruce-Fir Forest Based on CAPSIS Platform , 2011 .

[149]  Jennifer A. Miller,et al.  Incorporating spatial dependence in predictive vegetation models , 2007 .

[150]  J. Ogden,et al.  Applications of transition matrix models in forest dynamics: Araucaria in Papua New Guinea and Nothofagus in New Zealand , 1979 .

[151]  N. Picard,et al.  Finding confidence limits on population growth rates: bootstrap and analytic methods. , 2009, Mathematical biosciences.

[152]  Miguel Franco,et al.  comparative plant demography - relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials , 1993 .

[153]  N. Higuchi,et al.  Projeção da distribuição diamétrica de uma floresta explorada seletivamente na Amazônia Ocidental , 2009 .

[154]  M. Turner,et al.  Factors Influencing Succession: Lessons from Large, Infrequent Natural Disturbances , 1998, Ecosystems.

[155]  Stephen P. Hubbell,et al.  Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season , 2004, Journal of Tropical Ecology.

[156]  S. Ellner,et al.  Stochastic matrix models for conservation and management: A comparative review of methods , 2001 .

[157]  S. Hubbell,et al.  Predicting Population Trends from Size Distributions: A Direct Test in a Tropical Tree Community , 1998, The American Naturalist.

[158]  E. Álvarez-Buylla,et al.  Models of patch dynamics in tropical forests. , 1993, Trends in ecology & evolution.

[159]  Timo Kuuluvainen,et al.  Examining age- and altitude-related variation in tree architecture and needle efficiency in Norway spruce using trend surface analysis , 1996 .

[160]  L. Maillette Structural dynamics of silver birch II. A matrix model of the bud population , 1982 .

[161]  D. O. Logofet,et al.  Markov chain models for forest successions in the Erzgebirge, Germany , 2003 .

[162]  Shripad Tuljapurkar,et al.  Population Dynamics in Variable Environments , 1990 .

[163]  D. Pyke,et al.  THE EFFECT OF STOCHASTIC TECHNIQUE ON ESTIMATES OF POPULATION VIABILITY FROM TRANSITION MATRIX MODELS , 2003 .

[164]  J. Buongiorno,et al.  Nonlinearity and noise interaction in a model of forest growth , 2004 .

[165]  Robert M. May,et al.  MORTALITY AND RECRUITMENT RATE EVALUATIONS IN HETEROGENEOUS TROPICAL FORESTS , 1996 .

[166]  N. Stephenson,et al.  The accuracy of matrix population model projections for coniferous trees in the Sierra Nevada, California , 2005 .

[167]  S. Ellner,et al.  SIZE‐SPECIFIC SENSITIVITY: APPLYING A NEW STRUCTURED POPULATION MODEL , 2000 .

[168]  R. Salguero‐Gómez,et al.  Keeping plant shrinkage in the demographic loop , 2010 .

[169]  L. Lefkovitch The study of population growth in organisms grouped by stages , 1965 .

[170]  Lewi Stone,et al.  Connectivity, Cycles, and Persistence Thresholds in Metapopulation Networks , 2010, PLoS Comput. Biol..

[171]  S. S. Orois,et al.  Modelling the Growth and Management of Mixed Uneven-aged Maritime Pine - Broadleaved Species Forests in Galicia, North-western Spain , 2002 .

[172]  J. Silvertown,et al.  Comparing plant life histories using elasticity analysis: the importance of life span and the number of life-cycle stages , 1995, Oecologia.

[173]  C. Pfister,et al.  INDIVIDUAL VARIATION AND ENVIRONMENTAL STOCHASTICITY: IMPLICATIONS FOR MATRIX MODEL PREDICTIONS , 2003 .

[174]  Tomasz Wyszomirski,et al.  Competitive Asymmetry Reduces Spatial Effects on Size-Structure Dynamics in Plant Populations , 1994 .

[175]  R. Monserud,et al.  Bootstrap Simulation and Response Surface Optimization of Management Regimes for Douglas-Fir/Western Hemlock Stands , 2006, Forest Science.

[176]  Alain Franc,et al.  Aggregation of an individual-based space-dependent model of forest dynamics into distribution-based and space-independent models , 2001 .

[177]  L. Huenneke,et al.  Stem Dynamics of the Shrub Alnus Incana SSP. Rugosa: Transition Matrix Models , 1987 .

[178]  T. Kohyama,et al.  Size-structured tree populations in gap-dynamic forest-the forest architecture hypothesis for the stable coexistence of species , 1993 .

[179]  T. Hara,et al.  Dynamics of size structure in plant populations. , 1988, Trends in ecology & evolution.

[180]  Ary Teixeira de Oliveira Filho,et al.  Dinâmica da estrutura diamétrica da regeneração natural de espécies arbóreas e arbustivas no sub-bosque de povoamento puro de Mimosa scabrella Bentham, em área minerada, em Poços de Caldas, MG , 2005 .

[181]  Timo Pukkala,et al.  Optimal management of uneven-aged Norway spruce stands , 2010 .

[182]  Takuya Kubo,et al.  Mortality rate estimation when inter-census intervals vary , 2000, Journal of Tropical Ecology.

[183]  J. Osho Matrix model for tree population projection in a tropical rain forest of south-western Nigeria , 1991 .

[184]  O. Tahvonen OPTIMAL CHOICE BETWEEN EVEN‐ AND UNEVEN‐AGED FORESTRY , 2008 .

[185]  N. Picard,et al.  The stock recovery rate in a Central African rain forest: an index of sustainability based on projection matrix models , 2009 .

[186]  Estimating the stock recovery rate using matrix models , 2008 .

[187]  M. B. Usher,et al.  A Matrix Model for Forest Management , 1969 .

[188]  N. Picard,et al.  Sustainable cutting cycle and yields in a lowland mixed dipterocarp forest of Borneo , 2003 .

[189]  Natali Hritonenko,et al.  Maximum principle for a size-structured model of forest and carbon sequestration management , 2008, Appl. Math. Lett..

[190]  B. Craig,et al.  BAYESIAN ESTIMATION OF A DEMOGRAPHIC MATRIX MODEL FROM STAGE-FREQUENCY DATA , 2002 .

[191]  H. Caswell,et al.  Projection matrices in population biology. , 1988, Trends in ecology & evolution.

[192]  Wang Fei Application of matrix model in forest alternative cutting management. , 2005 .

[193]  M. Slatkin,et al.  Finding confidence limits on population growth rates : Monte Carlo test of a simple analytic method , 1993 .

[194]  J. Buongiorno,et al.  Tree Diversity, Landscape Diversity, and Economics of Maple-Birch Forests: Implications of Markovian Models , 1998 .

[195]  J. Cushing An introduction to structured population dynamics , 1987 .

[196]  H. Caswell,et al.  Elasticity analysis of density-dependent matrix population models: the invasion exponent and its substitutes. , 2004, Theoretical population biology.

[197]  S. Ramula,et al.  Importance of correlations among matrix entries in stochastic models in relation to number of transition matrices , 2005 .

[198]  M. Slatkin,et al.  Finding confidence limits on population growth rates. , 1991, Trends in ecology & evolution.

[199]  Allan J. Hruska,et al.  Predicting diameter distributions: a test of the stationary Markov model , 1986 .

[200]  A. Mendonça Caracterização e simulação dos processos dinâmicos de uma área de floresta tropical de terra firme utilizando matrizes de transição , 2013 .

[201]  S. Richards,et al.  Uncertainty in Population Growth Rates: Determining Confidence Intervals from Point Estimates of Parameters , 2010, PloS one.

[202]  S. E. Johnson,et al.  Evaluation of a stochastic diameter growth model for mountain ash , 1991 .

[203]  Simulation of the development of Norway spruce stands using a transition matrix , 1988 .

[204]  J. Buongiorno,et al.  Adaptive versus fixed policies for economic or ecological objectives in forest management , 2008 .

[205]  S. Orzack,et al.  Dynamic heterogeneity in life histories. , 2009, Ecology letters.

[206]  P. Chien Demography of Threatened Tree Species in Vietnam , 2006 .

[207]  N. Picard,et al.  Grouping species to model forest dynamics: a case study of a forest in the Central African Republic , 2002 .

[208]  J. Buongiorno,et al.  Estimation of a matrix model of forest growth from re-measured permanent plots , 1984 .

[209]  Dehai Zhao,et al.  A density-dependent matrix model for bottomland hardwood stands in the Lower Mississippi Alluvial Valley , 2005 .

[210]  N. Picard,et al.  Choosing classes for size projection matrix models. , 2010 .

[211]  T. Ticktin,et al.  Non-timber forest product harvest in variable environments: modeling the effect of harvesting as a stochastic sequence. , 2011, Ecological applications : a publication of the Ecological Society of America.

[212]  Wayne M. Getz,et al.  Population harvesting: demographic models of fish, forest, and animal resources. , 1990 .

[213]  F. Houllier,et al.  Growth and management of mixed-species, uneven-aged forests in the French Jura : implications for economic returns and tree diversity , 1995 .

[214]  Yves Caraglio,et al.  Analyzing growth components in trees. , 2007, Journal of theoretical biology.

[215]  Marten Scheffer,et al.  A strategy to improve the contribution of complex simulation models to ecological theory , 2005 .

[216]  H. Caswell Life table response experiment analysis of the stochastic growth rate , 2010 .

[217]  N. Picard,et al.  Modeling forest dynamics with a combined matrix/individual-based model , 2002 .

[218]  J. Buongiorno,et al.  Forest landscape management in a stochastic environment, with an application to mixed loblolly pine–hardwood forests , 2006 .

[219]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[220]  C. Bosch Redwoods: A Population Model , 1971, Science.

[221]  R. Dorazio,et al.  Statistical Inference in Life-Table Experiments: The Finite Rate of Increase , 1984 .

[222]  C. Belda,et al.  Choosing Fagus sylvatica L. matrix model dimension by sensitivity analysis of the population growth rate with respect to the width of the diameter classes , 2008 .

[223]  Aurélie Garnier,et al.  Using a spatial and stage-structured invasion model to assess the spread of feral populations of transgenic oilseed rape , 2006 .

[224]  Shandelle M. Henson Leslie matrix models as “stroboscopic snapshots” of McKendrick PDE models , 1998 .

[225]  J. Buongiorno,et al.  Modeling forest growth with management data: A matrix approach for the Italian Alps. , 1997 .

[226]  Amitrajeet A. Batabyal On some aspects of the management of a stochastically developing forest , 1996 .

[227]  Andrea Nogueira Dias,et al.  Prognose da estrutura diamétrica de uma Floresta Ombrófila Mista com os métodos razão de movimentos e matriz de transição , 2010 .

[228]  W. Platt,et al.  DEMOGRAPHY OF A SHADE-TOLERANT TREE (FAGUS GRANDIFOLIA) IN A HURRICANE-DISTURBED FOREST , 1998 .

[229]  P. L. Sankhayan,et al.  A multi-species density-dependent matrix growth model for the dry woodlands of Uganda , 2005 .