A variational model based on isogeometric interpolation for the analysis of cracked bodies

Abstract A variational model for the analysis of crack evolution is presented. The method considers strong discontinuities that evolve according to the principles of cohesive fracture mechanics. A novel isogeometric interpolation scheme is presented that, differently from previous proposals, inserts the fracture modifying the blending properties of the interpolation. A method for tracking the discontinuity is also proposed, based on a local distortion of the parametrization of the geometry obtained determining the position of the control points of the isogeometric interpolation as solution of a suitable minimization problem.

[1]  Dusan Krajcinovic,et al.  Statistical Damage Mechanics and Extreme Value Theory , 2007 .

[2]  L. J. Sluys,et al.  Non-homogeneous displacement jumps in strong embedded discontinuities , 2003 .

[3]  Alfredo Edmundo Huespe,et al.  Continuum approach to material failure in strong discontinuity settings , 2004 .

[4]  G. D. Maso,et al.  Quasistatic Crack Growth in Nonlinear Elasticity , 2005 .

[5]  Ying-Cheng Lai,et al.  Lattice models of polycrystalline microstructures: A quantitative approach , 2008 .

[6]  A. Misra,et al.  Higher-Order Stress-Strain Theory for Damage Modeling Implemented in an Element-free Galerkin Formulation , 2010 .

[7]  Patrizio Neff,et al.  A GEOMETRICALLY EXACT PLANAR COSSERAT SHELL-MODEL WITH MICROSTRUCTURE: EXISTENCE OF MINIMIZERS FOR ZERO COSSERAT COUPLE MODULUS , 2007 .

[8]  Maurizio Porfiri,et al.  Piezoelectric Passive Distributed Controllers for Beam Flexural Vibrations , 2004 .

[9]  Francesco dell’Isola,et al.  A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio‐resorbable materials , 2012 .

[10]  Victor A. Eremeyev,et al.  Phase transitions in thermoelastic and thermoviscoelastic shells , 2008 .

[11]  Ignacio Carol,et al.  Crack opening conditions at ‘corner nodes’ in FE analysis with cracking along mesh lines , 2007 .

[12]  T. Belytschko,et al.  X‐FEM in isogeometric analysis for linear fracture mechanics , 2011 .

[13]  L. Sluys,et al.  Towards a generalization of a discrete strong discontinuity approach , 2009 .

[14]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[15]  Antonio Rinaldi,et al.  Statistical model with two order parameters for ductile and soft fiber bundles in nanoscience and biomaterials. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[17]  Samuel Forest,et al.  Nonlinear microstrain theories , 2006 .

[18]  A. Rinaldi Bottom-up modeling of damage in heterogeneous quasi-brittle solids , 2013 .

[19]  Ivan Giorgio,et al.  Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids , 2013 .

[20]  Victor A. Eremeyev,et al.  Extended non‐linear relations of elastic shells undergoing phase transitions , 2007 .

[21]  Francesco dell’Isola,et al.  On a model of layered piezoelectric beams including transverse stress effect , 2004 .

[22]  F. dell'Isola,et al.  Analytical continuum mechanics à la Hamilton–Piola least action principle for second gradient continua and capillary fluids , 2013, 1305.6744.

[23]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[24]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[25]  Francesco dell’Isola,et al.  The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power , 1995 .

[26]  Thomas J. R. Hughes,et al.  An isogeometric approach to cohesive zone modeling , 2011 .

[27]  Antonin Chambolle,et al.  When and how do cracks propagate? , 2009, Journal of the Mechanics and Physics of Solids.

[28]  J. Oliver MODELLING STRONG DISCONTINUITIES IN SOLID MECHANICS VIA STRAIN SOFTENING CONSTITUTIVE EQUATIONS. PART 1: FUNDAMENTALS , 1996 .

[29]  Victor A. Eremeyev,et al.  Thermomechanics of shells undergoing phase transition , 2011 .

[30]  Massimo Cuomo,et al.  A new thermodynamically consistent continuum model for hardening plasticity coupled with damage , 2002 .

[31]  Stefano Vidoli,et al.  Vibration control in plates by uniformly distributed PZT actuators interconnected via electric networks , 2001 .

[32]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[33]  Tomasz Lekszycki,et al.  A 2‐D continuum model of a mixture of bone tissue and bio‐resorbable material for simulating mass density redistribution under load slowly variable in time , 2014 .

[34]  L. Sluys,et al.  A comparative study on the modelling of discontinuous fracture by means of enriched nodal and element techniques and interface elements , 2009 .

[35]  Yves Rémond,et al.  A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling , 2012 .

[36]  Vincent Hakim,et al.  Laws of crack motion and phase-field models of fracture , 2008, 0806.0593.

[37]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[38]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[39]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[40]  Ying-Cheng Lai,et al.  Statistical damage theory of 2D lattices : Energetics and physical foundations of damage parameter , 2007 .

[41]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[42]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[43]  Alessandro Reali,et al.  AN ISO GEOMETRIC ANALYSIS APPROACH FOR THE STUDY OF STRUCTURAL VIBRATIONS , 2006 .

[44]  Milan Jirásek,et al.  ADAPTIVE RESOLUTION OF LOCALIZED DAMAGE IN QUASI-BRITTLE MATERIALS , 2004 .

[45]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[46]  Samuel Forest,et al.  Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage , 2009 .

[47]  Pierre Seppecher,et al.  Radius and surface tension of microscopic bubbles by second gradient theory , 1995, 0808.0312.

[48]  Alfredo Edmundo Huespe,et al.  Strain localization, strong discontinuities and material fracture: matches and mismatches , 2012 .

[49]  Yang Yang,et al.  Higher-Order Continuum Theory Applied to Fracture Simulation of Nanoscale Intergranular Glassy Film , 2011 .

[50]  Francesco dell’Isola,et al.  How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert” , 2012 .

[51]  Ugo Andreaus,et al.  Fatigue crack growth, free vibrations, and breathing crack detection of aluminium alloy and steel beams , 2009 .

[52]  Matteo Negri,et al.  QUASI-STATIC CRACK PROPAGATION BY GRIFFITH'S CRITERION , 2008 .

[53]  Christopher J. Larsen,et al.  Existence and convergence for quasi‐static evolution in brittle fracture , 2003 .

[54]  Olivier Coussy,et al.  Second gradient poromechanics , 2007 .

[55]  Ivan Giorgio,et al.  Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials , 2014 .

[56]  K. Hutter,et al.  A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi's effective stress principle , 2010 .

[57]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[58]  G. Piero A Variational Approach to Fracture and Other Inelastic Phenomena , 2013 .

[59]  N. Chevaugeon,et al.  A level set based model for damage growth: The thick level set approach , 2011 .

[60]  Wojciech Pietraszkiewicz,et al.  The Nonlinear Theory of Elastic Shells with Phase Transitions , 2004 .

[61]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .

[62]  J. Oliver,et al.  Strong discontinuities and continuum plasticity models: the strong discontinuity approach , 1999 .

[63]  Ted Belytschko,et al.  A vector level set method and new discontinuity approximations for crack growth by EFG , 2002 .

[64]  F. dell’Isola,et al.  A phenomenological approach to phase transition in classical field theory , 1987 .

[65]  Jorge Alfaiate,et al.  A FINITE ELEMENT ANALYSIS OF NON-PRESCRIBED CRACK PROPAGATION IN CONCRETE , 1997 .

[66]  Antonio Rinaldi,et al.  Rational Damage Model of 2D Disordered Brittle Lattices Under Uniaxial Loadings , 2009 .

[67]  H. Stumpf,et al.  Variational principles of nonlinear fracture mechanics , 1990 .

[68]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[69]  A. Huespe,et al.  Theoretical and computational issues in modelling material failure in strong discontinuity scenarios , 2004 .

[70]  P. Neff A finite-strain elastic–plastic Cosserat theory for polycrystals with grain rotations , 2006 .

[71]  V. A. Eremeev,et al.  Nonuniqueness and stability in problems of equilibrium of elastic two-phase bodies , 2003 .

[72]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[73]  Tomasz Lekszycki,et al.  A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery , 2011 .

[74]  Francisco Armero,et al.  Finite elements with embedded strong discontinuities for the modeling of failure in solids , 2007 .

[75]  Francesco dell’Isola,et al.  Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua , 2012 .

[76]  T. Belytschko,et al.  New crack‐tip elements for XFEM and applications to cohesive cracks , 2003 .

[77]  R. Radovitzky,et al.  A new discontinuous Galerkin method for Kirchhoff–Love shells , 2008 .

[78]  Jean-Jacques Marigo,et al.  Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments , 2009 .