Structural Basis for Gating and Activation of RyR1

[1]  Wenting Guo,et al.  The EF-hand Ca2+ Binding Domain Is Not Required for Cytosolic Ca2+ Activation of the Cardiac Ryanodine Receptor* , 2015, The Journal of Biological Chemistry.

[2]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[3]  M. Baker,et al.  Gating machinery of InsP3R channels revealed by electron cryomicroscopy , 2015, Nature.

[4]  F. van Petegem,et al.  Crystal structures of ryanodine receptor SPRY1 and tandem-repeat domains reveal a critical FKBP12 binding determinant , 2015, Nature Communications.

[5]  Nikolaus Grigorieff,et al.  Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6 , 2015, eLife.

[6]  N. Dokholyan,et al.  Channel Gating Dependence on Pore Lining Helix Glycine Residues in Skeletal Muscle Ryanodine Receptor* , 2015, The Journal of Biological Chemistry.

[7]  Sjors H.W. Scheres,et al.  Semi-automated selection of cryo-EM particles in RELION-1.3 , 2015, Journal of structural biology.

[8]  Lori A. Passmore,et al.  Ultrastable gold substrates for electron cryomicroscopy , 2014, Science.

[9]  Ruedi Aebersold,et al.  Architecture and conformational switch mechanism of the ryanodine receptor , 2014, Nature.

[10]  Yigong Shi,et al.  Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution , 2014, Nature.

[11]  F. van Petegem,et al.  Crystal structures of wild type and disease mutant forms of the ryanodine receptor SPRY2 domain , 2014, Nature Communications.

[12]  J. Frank,et al.  Structure of a mammalian ryanodine receptor , 2014, Nature.

[13]  Marcus A. Brubaker,et al.  Alignment of cryo-EM movies of individual particles by optimization of image translations. , 2014, Journal of structural biology.

[14]  R. Henderson,et al.  High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy☆ , 2013, Ultramicroscopy.

[15]  Hemant D. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[16]  A. J. Williams,et al.  Functional Characterization of the Cardiac Ryanodine Receptor Pore-Forming Region , 2013, PloS one.

[17]  D. Agard,et al.  Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM , 2013, Nature Methods.

[18]  F. van Petegem,et al.  Disease mutations in the ryanodine receptor N-terminal region couple to a mobile intersubunit interface , 2013, Nature Communications.

[19]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[20]  M. R. Baker,et al.  Identification of ATP-Binding Regions in the RyR1 Ca2+ Release Channel , 2012, PloS one.

[21]  M. Ikura,et al.  Structural determination of the phosphorylation domain of the ryanodine receptor , 2012, The FEBS journal.

[22]  K. Oguchi,et al.  Role of Amino-terminal Half of the S4-S5 Linker in Type 1 Ryanodine Receptor (RyR1) Channel Gating* , 2011, The Journal of Biological Chemistry.

[23]  Filip Van Petegem,et al.  The amino-terminal disease hotspot of ryanodine receptors forms a cytoplasmic vestibule , 2010, Nature.

[24]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[25]  P. Vogel,et al.  Effects of Small Molecule Modulators on ATP Binding to Skeletal Ryanodine Receptor , 2009, The protein journal.

[26]  I. Kuntz,et al.  DOCK 6: combining techniques to model RNA-small molecule complexes. , 2009, RNA.

[27]  P. Allen,et al.  Coordinated Movement of Cytoplasmic and Transmembrane Domains of RyR1 upon Gating , 2009, PLoS biology.

[28]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[29]  M. Sansom,et al.  Kv Channel Gating Requires a Compatible S4-S5 Linker and Bottom Part of S6, Constrained by Non-interacting Residues , 2008, The Journal of general physiology.

[30]  A. J. Williams,et al.  Quantification of the effects of a ryanodine receptor channel mutation on interaction with a ryanoid , 2007, Molecular membrane biology.

[31]  A. J. Williams,et al.  The Interaction of an Impermeant Cation with the Sheep Cardiac RyR Channel Alters Ryanoid Association , 2006, Molecular Pharmacology.

[32]  Anchi Cheng,et al.  Automated molecular microscopy: the new Leginon system. , 2005, Journal of structural biology.

[33]  J. Fessenden,et al.  Mutational Analysis of Putative Calcium Binding Motifs within the Skeletal Ryanodine Receptor Isoform, RyR1* , 2004, Journal of Biological Chemistry.

[34]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[35]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[36]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[37]  Xinghua Guo,et al.  Topology of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum (RyR1) , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  G. Lamb,et al.  Regulation of the calcium release channel from rabbit skeletal muscle by the nucleotides ATP, AMP, IMP and adenosine , 2001, The Journal of physiology.

[39]  S. Chen,et al.  Molecular Basis of Ca2+ Activation of the Mouse Cardiac Ca2+ Release Channel (Ryanodine Receptor) , 2001, The Journal of general physiology.

[40]  Yaming Wang,et al.  Ryanodine receptor point mutant E4032A reveals an allosteric interaction with ryanodine , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Sitsapesan,et al.  Structural factors that determine the ability of adenosine and related compounds to activate the cardiac ryanodine receptor , 2000, British journal of pharmacology.

[42]  N. Ikemoto,et al.  Postulated Role of Interdomain Interaction within the Ryanodine Receptor in Ca2+ Channel Regulation* , 2000, The Journal of Biological Chemistry.

[43]  W. Chiu,et al.  Structure of the skeletal muscle calcium release channel activated with Ca2+ and AMP-PCP. , 1999, Biophysical journal.

[44]  F. Protasi,et al.  Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles. , 1999, Biophysical journal.

[45]  S. Marx,et al.  Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors) , 1998, Science.

[46]  R. Sitsapesan,et al.  The interactions of ATP, ADP, and inorganic phosphate with the sheep cardiac ryanodine receptor. , 1998, Biophysical journal.

[47]  A. Tinker,et al.  Structural components of ryanodine responsible for modulation of sarcoplasmic reticulum calcium channel function. , 1997, Biochemistry.

[48]  B. Wallace,et al.  HOLE: a program for the analysis of the pore dimensions of ion channel structural models. , 1996, Journal of molecular graphics.

[49]  A. Marks,et al.  Effects of rapamycin on ryanodine receptor/Ca(2+)-release channels from cardiac muscle. , 1996, Circulation research.

[50]  J. P. Wang,et al.  Localization of the high and low affinity [3H]ryanodine binding sites on the skeletal muscle Ca2+ release channel. , 1994, The Journal of biological chemistry.

[51]  A. Marks,et al.  Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein , 1994, Cell.

[52]  L. Xu,et al.  Reconstitution of the skeletal muscle ryanodine receptor-Ca2+ release channel protein complex into proteoliposomes. , 1994, The Journal of biological chemistry.

[53]  K. Campbell,et al.  Photoaffinity labeling of the ryanodine receptor/Ca2+ release channel with an azido derivative of ryanodine. , 1994, The Journal of biological chemistry.

[54]  A. Tinker,et al.  Using large organic cations to probe the nature of ryanodine modification in the sheep cardiac sarcoplasmic reticulum calcium release channel. , 1993, Biophysical journal.

[55]  I. Pessah,et al.  Ryanodine induces persistent inactivation of the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. , 1992, Molecular pharmacology.

[56]  M. Kushmerick,et al.  Mammalian skeletal muscle fibers distinguished by contents of phosphocreatine, ATP, and Pi. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[57]  G. Flik,et al.  CHELATOR: an improved method for computing metal ion concentrations in physiological solutions. , 1992, BioTechniques.

[58]  K. D. Collins,et al.  Interdependence of ryanodine binding, oligomeric receptor interactions, and Ca2+ release regulation in junctional sarcoplasmic reticulum. , 1991, Archives of biochemistry and biophysics.

[59]  James Watras,et al.  Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum , 1991, Nature.

[60]  S. Hamilton,et al.  Ryanodine as a probe for the functional state of the skeletal muscle sarcoplasmic reticulum calcium release channel. , 1990, Molecular pharmacology.

[61]  J. Dubochet,et al.  Cryo-electron microscopy of vitrified specimens , 1988, Quarterly Reviews of Biophysics.

[62]  S. Fleischer,et al.  Ryanodine sensitivity of the calcium release channel of sarcoplasmic reticulum. , 1988, Cell calcium.

[63]  J Frank,et al.  Electron microscopy and computer image averaging of ice-embedded large ribosomal subunits from Escherichia coli. , 1988, Journal of molecular biology.

[64]  K. Campbell,et al.  Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+-permeable pore of the calcium release channel. , 1987, The Journal of biological chemistry.

[65]  A. Fabiato,et al.  Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. , 1983, The American journal of physiology.

[66]  D. Bers,et al.  A practical guide to the preparation of Ca(2+) buffers. , 2010, Methods in cell biology.

[67]  S. Hamilton,et al.  A Ca2+-binding domain in RyR1 that interacts with the calmodulin binding site and modulates channel activity. , 2006, Biophysical journal.

[68]  S. Hamilton,et al.  RyR1 modulation by oxidation and calmodulin. , 2000, Antioxidants & redox signaling.