On maximum principles for monotone matrices

Abstract For monotone matrices and H -matrices, maximum principles are defined, and necessary and sufficient conditions are derived for these principles to hold.

[1]  J. Schröder Lineare Operatoren mit positiver inversen , 1961 .

[2]  Lothar Collatz,et al.  Aufgaben monotoner Art , 1952 .

[3]  Philippe G. Ciarlet,et al.  Discrete maximum principle for finite-difference operators , 1970 .

[4]  I-wen Kuo The Moore-Penrose inverses of singular M-matrices , 1977 .

[5]  J. Lorenz,et al.  Zur Inversmonotonie diskreter Probleme , 1977 .

[6]  P. G. Ciarlet,et al.  Maximum principle and uniform convergence for the finite element method , 1973 .

[7]  Charles R. Johnson Inverse M-matrices☆ , 1982 .

[8]  A. Ostrowski Determinanten mit überwiegender Hauptdiagonale und die absolute Konvergenz von linearen Iterationsprozessen , 1956 .

[9]  R. Willoughby The inverse M-matrix problem , 1977 .

[10]  P. G. Ciarlet,et al.  An 0 (h2) method for a non-smooth boundary value problem , 1968 .

[11]  G. Sierksma Non-negative matrices: The open Leontief model , 1979 .

[12]  W. Pye Nonnegative Drazin inverses , 1980 .

[13]  Uriel G. Rothblum,et al.  A Representation of the Drazin Inverse and Characterizations of the Index , 1976 .

[14]  M. Morishima,et al.  Equilibrium, Stability and Growth: A Multi-Sectoral Analysis , 1964 .

[15]  P. Moylan,et al.  Matrices with positive principal minors , 1977 .

[16]  G. Stoyan,et al.  On a Maximum Principle for Matrices, and on Conservation of Monotonicity. With Applications to Discretization Methods , 1982 .

[17]  J. Meyer,et al.  Limits and the Index of a Square Matrix , 1974 .