Topological control of level set method depending on topology constraints

In this paper, a novel framework combining the Chan-Vese active contour segmentation model with topology control mechanism is proposed. The novel framework can control active contours to capture specified objects in the applied images. Geometric active contours implemented by the traditional level set method can adaptively split and merge, but it is difficult to handle the topological constraints of the segmentation results. The proposed framework provides the users with previously set topologic constraints to control active contours' splitting behavior for segmentation purposes. The Euler number and numbers of the connected regions of image objects are the topologic constraints implemented in the topology control mechanism. Some segmentation results of synthetic images demonstrate the effectiveness of the topological control algorithm. The segmentation results of the medical images show that the proposed framework provides convenience and flexibility to segment objects.

[1]  Demetri Terzopoulos,et al.  Symmetry-seeking models and 3D object reconstruction , 1988, International Journal of Computer Vision.

[2]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[3]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Anthony J. Yezzi,et al.  Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[5]  Demetri Terzopoulos,et al.  Deformable models , 2000, The Visual Computer.

[6]  Baba C. Vemuri,et al.  Evolutionary Fronts for Topology-Independent Shape Modeling and Recoveery , 1994, ECCV.

[7]  Demetri Terzopoulos,et al.  Topologically adaptable snakes , 1995, Proceedings of IEEE International Conference on Computer Vision.

[8]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Demetri Terzopoulos,et al.  On Matching Deformable Models to Images , 1987, Topical Meeting on Machine Vision.

[10]  Xiao Han,et al.  A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[12]  Tony F. Chan,et al.  Active Contours without Edges for Vector-Valued Images , 2000, J. Vis. Commun. Image Represent..

[13]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[14]  Kaleem Siddiqi,et al.  Area and length minimizing flows for shape segmentation , 1998, IEEE Trans. Image Process..

[15]  Jean-Philippe Pons,et al.  A Novel Active Contour Framework: Multi-component Level Set Evolution under Topology Control , 2005 .

[16]  Jerry L. Prince,et al.  Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..

[17]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[18]  Frederic Fol Leymarie,et al.  Tracking Deformable Objects in the Plane Using an Active Contour Model , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[20]  Baba C. Vemuri,et al.  Topology-independent shape modeling scheme , 1993, Optics & Photonics.

[21]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[22]  Tai Sing Lee,et al.  Region competition: unifying snakes, region growing, energy/Bayes/MDL for multi-band image segmentation , 1995, Proceedings of IEEE International Conference on Computer Vision.

[23]  Tony F. Chan,et al.  An Active Contour Model without Edges , 1999, Scale-Space.

[24]  Olivier D. Faugeras,et al.  Unfolding the Cerebral Cortex Using Level Set Methods , 1999, Scale-Space.

[25]  J. Sethian AN ANALYSIS OF FLAME PROPAGATION , 1982 .

[26]  P. Olver,et al.  Conformal curvature flows: From phase transitions to active vision , 1996, ICCV 1995.

[27]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[28]  Rachid Deriche,et al.  Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Demetri Terzopoulos,et al.  Topology adaptive deformable surfaces for medical image volume segmentation , 1999, IEEE Transactions on Medical Imaging.

[30]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[31]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[32]  Demetri Terzopoulos,et al.  Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion , 1988, Artif. Intell..

[33]  Xiao Han,et al.  A topology preserving deformable model using level sets , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[34]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[35]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[36]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..