Use of Descriptors of Ecosystem Functioning for Monitoring a National Park Network: A Remote Sensing Approach

Baseline assessments and monitoring of protected areas are essential for making management decisions, evaluating the effectiveness of management practices, and tracking the effects of global changes. For these purposes, the analysis of functional attributes of ecosystems (i.e., different aspects of the exchange of matter and energy) has advantages over the traditional use of structural attributes, like a quicker response to disturbances and the fact that they are easily monitored through remote sensing. In this study, we described the spatiotemporal patterns of different aspects of the ecosystem functioning of the Spanish national parks and their response to environmental changes between 1982 and 2006. To do so, we used the NOAA/AVHRR-GIMMS dataset of the Normalized Difference Vegetation Index (NDVI), a linear estimator of the fraction of photosynthetic active radiation intercepted by vegetation, which is the main control of carbon gains. Nearly all parks have significantly changed during the last 25 years: The radiation interception has increased, the contrast between the growing and nongrowing seasons has diminished, and the dates of maximum and minimum interception have advanced. Some parks concentrated more changes than others and the degree of change varied depending on their different environmental conditions, management, and conservation histories. Our approach identified reference conditions and temporal changes for different aspects of ecosystem functioning, which can be used for management purposes of protected areas in response to global changes.

[1]  R. O'Neill,et al.  The value of the world's ecosystem services and natural capital , 1997, Nature.

[2]  L. Hannah,et al.  Would climate change drive species out of reserves? An assessment of existing reserve‐selection methods , 2004 .

[3]  R. Zamora,et al.  Herbivory and climatic warming: a Mediterranean outbreaking caterpillar attacks a relict, boreal pine species , 2004, Biodiversity & Conservation.

[4]  W. K. Lauenroth,et al.  Inertia in Plant Community Structure: State Changes After Cessation of Nutrient‐Enrichment Stress , 1995 .

[5]  Edwin W. Pak,et al.  An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data , 2005 .

[6]  Josep Peñuelas,et al.  A global change‐induced biome shift in the Montseny mountains (NE Spain) , 2003 .

[7]  Manuel de Castro,et al.  El clima de España: Pasado, presente y escenarios de clima para el siglo XXI , 2005 .

[8]  D. Lloyd,et al.  A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery , 1990 .

[9]  D. Tongway,et al.  Monitoring ecological indicators of rangeland functional integrity and their relation to biodiversity at local to regional scales , 2004 .

[10]  Special Section: Contributions of Remote Sensing to Biodiversity Conservation: a NASA Approach , 2001 .

[11]  Simon A. Levin,et al.  Encyclopedia of Biodiversity , 2000 .

[12]  R. DeFries,et al.  Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin , 2007 .

[13]  C. Stoner,et al.  Assessing habitat protection regimes in Tanzania using AVHRR NDVI composites: Comparisons at different spatial and temporal scales , 2003 .

[14]  Carl J. Walters,et al.  Adaptive Management of Renewable Resources , 1986 .

[15]  R. Hobbs,et al.  Ecological Restoration and Global Climate Change , 2006 .

[16]  C. V. Barber,et al.  Securing protected areas in the face of global change: issues and strategies. , 2004 .

[17]  R. Jenkins,et al.  The use of natural areas to establish environmental baselines , 1973 .

[18]  N. F. M U S T A,et al.  Comparison of phenology trends by land cover class : a case study in the Great Basin , USA , 2007 .

[19]  M. Fladeland,et al.  Remote sensing for biodiversity science and conservation , 2003 .

[20]  P. Zorn,et al.  An Ecosystem Management Program and Assessment Process for Ontario National Parks , 2001 .

[21]  S. Sarkar,et al.  Systematic conservation planning , 2000, Nature.

[22]  R. E. Grumbine What Is Ecosystem Management , 1994 .

[23]  L. Hannah,et al.  Climate change‐integrated conservation strategies , 2002 .

[24]  Hugh P. Possingham,et al.  Protected areas: Goals, limitations, and design , 2006 .

[25]  Gerald van Belle,et al.  Nonparametric Tests for Trend in Water Quality , 1984 .

[26]  C. Tucker,et al.  Satellite remote sensing of primary production , 1986 .

[27]  J. Paruelo,et al.  Evapotranspiration estimates using NOAA AVHRR imagery in the Pampa region of Argentina , 2000 .

[28]  B. Tegler,et al.  Ecological Monitoring and Assessment Network's Proposed Core Monitoring Variables: An Early Warning of Environmental Change , 2001, Environmental monitoring and assessment.

[29]  Robert J. Wilson,et al.  An elevational shift in butterfly species richness and composition accompanying recent climate change , 2007 .

[30]  P. Vos,et al.  A Framework for the Design of Ecological Monitoring Programs as a Tool for Environmental and Nature Management , 2000 .

[31]  Rosa Cañada Torrecilla,et al.  Evolución de las precipitaciones anuales en la meseta meridional durante el siglo XX , 1999 .

[32]  Bradley C. Reed,et al.  Trend Analysis of Time-Series Phenology of North America Derived from Satellite Data , 2006 .

[33]  S. Yaffee Three Faces of Ecosystem Management , 1999 .

[34]  C. Potter,et al.  Global analysis of empirical relations between annual climate and seasonality of NDVI , 1998 .

[35]  José M. Paruelo,et al.  REGIONAL PATTERNS OF NORMALIZED DIFFERENCE VEGETATION INDEX IN NORTH AMERICAN SHRUBLANDS AND GRASSLANDS , 1995 .

[36]  Robert Costanza,et al.  Ecosystem Health New Goals for Environmental Management , 1992 .

[37]  David Hoare,et al.  Phenological description of natural vegetation in southern Africa using remotely-sensed vegetation data , 2004 .

[38]  J. Paruelo,et al.  Temporal and spatial patterns of ecosystem functioning in protected arid areas in southeastern Spain , 2005 .

[39]  C. Serra,et al.  Analysis of maximum and minimum daily temperatures recorded at Fabra Observatory (Barcelona, NE Spain) in the period 1917–1998 , 2001 .

[40]  N. Pettorelli,et al.  Using the satellite-derived NDVI to assess ecological responses to environmental change. , 2005, Trends in ecology & evolution.

[41]  E. Aguilar,et al.  A Differential Response of Northeastern Spain to Asymmetric Trends in Diurnal Warming Detected on a Global Scale , 2001 .

[42]  Gary K. Meffe,et al.  Principles of Conservation Biology , 1995 .

[43]  J. Camarero,et al.  Structure and recent recruitment at alpine forest-pasture ecotones in the Spanish central Pyrenees , 1999 .

[44]  S. Liang Narrowband to broadband conversions of land surface albedo I Algorithms , 2001 .

[45]  Nicholas C. Coops,et al.  Development of a large area biodiversity monitoring system driven by remote sensing , 2007 .

[46]  José M. Paruelo,et al.  Identification of current ecosystem functional types in the Iberian Peninsula , 2006 .

[47]  J. C. Taylor,et al.  Real-time monitoring of vegetation biomass with NOAA-AVHRR in Etosha National Park, Namibia, for fire risk assessment , 2002 .

[48]  J. Monteith Climatic variation and the growth of crops , 2007 .

[49]  C. Schonewald-Cox,et al.  Boundaries in the Protection of Nature Reserves: Translating multidisciplinary knowledge into practical conservation , 1988 .

[50]  J. Paruelo,et al.  ANPP ESTIMATES FROM NDVI FOR THE CENTRAL GRASSLAND REGION OF THE UNITED STATES , 1997 .

[51]  Matthias Staudt Detección de cambios térmicos en la península ibérica con datos homogéneos regionales , 2004 .

[52]  J. Moreno,et al.  Evaluación preliminar de los impactos en España por efecto del cambio climático , 2005 .

[53]  R. O'Neill,et al.  The value of the world's ecosystem services and natural capital , 1997, Nature.

[54]  O. Gordo,et al.  Climate change and bird phenology: a long‐term study in the Iberian Peninsula , 2006 .

[55]  Howard E. Epstein,et al.  Spatial heterogeneity of tundra vegetation response to recent temperature changes , 2006 .

[56]  Josep Peñuelas,et al.  Complex spatiotemporal phenological shifts as a response to rainfall changes. , 2004, The New phytologist.

[57]  J. Camarero,et al.  Pace and Pattern of Recent Treeline Dynamics: Response of Ecotones to Climatic Variability in the Spanish Pyrenees , 2004 .

[58]  F. Valladares,et al.  Microbios en la niebla: descubriendo el papel de los microbios en la biosfera , 2005 .

[59]  M. Hockings,et al.  Evaluating the effectiveness of protected area management: The challenge of change , 2004 .

[60]  S. Chape,et al.  2003 United Nations list of protected areas , 2003 .

[61]  Markus Reichstein,et al.  Similarities in ground- and satellite-based NDVI time series and their relationship to physiological activity of a Scots pine forest in Finland , 2004 .

[62]  S. Vicente‐Serrano,et al.  NAO influence on NDVI trends in the Iberian peninsula (1982–2000) , 2004 .

[63]  Miguel Delibes,et al.  Trends in the surface vegetation dynamics of the national parks of Spain as observed by satellite sensors , 2008 .

[64]  R. Hirsch,et al.  A Nonparametric Trend Test for Seasonal Data With Serial Dependence , 1984 .

[65]  S. McNaughton,et al.  Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats , 1989, Nature.

[66]  José M. Paruelo,et al.  Remote sensing of protected areas to derive baseline vegetation functioning characteristics , 2004 .

[67]  Maosheng Zhao,et al.  A new satellite-based methodology for continental-scale disturbance detection. , 2007, Ecological applications : a publication of the Ecological Society of America.