Facet reflectivity reduction of quantum cascade lasers by tilted facets

The authors present a technique to reduce the facet reflectivity in quantum cascade lasers (QCLs) by tilted facets. In order to minimize the Fabry-Pérot resonances, the feedback from the laser facets into the cavity must be minimized. Due to intersubband selection rules, the light generated inside QCLs is TM polarized. This polarization purity in QCLs enables the reduction of the facet reflectivity through the angle of light incidence at the laser facet. We observed a maximum threshold current density when the facet is tilted 17° towards the surface normal. This is in agreement with the calculated Brewster's angle for the QCL heterostructure.

[1]  Luke R. Wilson,et al.  Broadband 6μm<λ<8μm superluminescent quantum cascade light-emitting diodes , 2006 .

[2]  Manijeh Razeghi,et al.  High power broad area quantum cascade lasers , 2009 .

[3]  Federico Capasso,et al.  Single-mode, tunable distributed-feedback and multiple-wavelength quantum cascade lasers , 2002 .

[4]  F. Capasso,et al.  Mid-infrared (λ≈7.4 μm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality , 2002 .

[5]  Fow-Sen Choa,et al.  Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth , 2006, IEEE Photonics Technology Letters.

[6]  G. Eisenstein,et al.  Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode , 1983, IEEE Journal of Quantum Electronics.

[7]  Mattias Beck,et al.  Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers , 2004 .

[8]  C. Caneau,et al.  1.3-/spl mu/m GalnAsP Near Traveling-wave Laser Amplifiers Made By The Combination Of Angled Facets And Antireflection Coatings , 1988, Conference Proceedings LEOS Lasers and Electro-Optics Society.

[9]  S. Corzine,et al.  Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing , 2008 .

[10]  C. Pflugl,et al.  DFB Quantum Cascade Laser Arrays , 2009, IEEE Journal of Quantum Electronics.

[11]  M. Razeghi,et al.  High-Performance InP-Based Mid-IR Quantum Cascade Lasers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  Zhijun Liu,et al.  Reduction of Facet Reflectivity of Quantum-Cascade Lasers With Subwavelength Gratings , 2007, IEEE Photonics Technology Letters.

[13]  Gottfried Strasser,et al.  Two-dimensional broadband distributed-feedback quantum cascade laser arrays , 2011 .

[14]  C. Caneau,et al.  Fabrication and performance of 1.5μm GaInAsP travelling-wave laser amplifiers with angled facets , 1987 .

[15]  E. Gini,et al.  Distributed-Feedback Quantum-Cascade Lasers at 9 $\mu$m Operating in Continuous Wave Up to 423 K , 2009, IEEE Photonics Technology Letters.

[16]  Federico Capasso,et al.  1.6W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm , 2008 .

[17]  M. Fraser,et al.  Application of quantum cascade lasers to trace gas analysis , 2008 .

[18]  Stephen R. Forrest,et al.  OPTICS 2901 Quantum cascade laser: Temperature dependence of the performance characteristics and high T0 operation , 1994 .

[19]  H. Zappe Introduction to Semiconductor Integrated Optics , 1995 .

[20]  Federico Capasso,et al.  High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings , 2009 .