Bayesian interpretation to generalize adaptive mean shift algorithm

The Adaptive Mean Shift (AMS) algorithm is a popular and simple non-parametric clustering approach based on Kernel Density Estimation. In this paper the AMS is reformulated in a Bayesian framework, which permits a natural generalization in several directions and is shown to improve performance. The Bayesian framework considers the AMS to be a method of obtaining a posterior mode. This allows the algorithm to be generalized with three components which are not considered in the conventional approach: node weights, a prior for a particular location, and a posterior distribution for the bandwidth. Practical methods of building the three different components are considered.

[1]  Hui Xiong,et al.  Understanding of Internal Clustering Validation Measures , 2010, 2010 IEEE International Conference on Data Mining.

[2]  Artur Chodorowski,et al.  A fully automatic unsupervised segmentation framework for the brain tissues in MR images , 2014, Medical Imaging.

[3]  Trevor Darrell,et al.  Nearest-Neighbor Methods in Learning and Vision: Theory and Practice (Neural Information Processing) , 2006 .

[4]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[5]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[6]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[7]  Anton van den Hengel,et al.  Fast Global Kernel Density Mode Seeking: Applications to Localization and Tracking , 2007, IEEE Transactions on Image Processing.

[8]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[10]  Markus Breitenbach,et al.  Clustering through ranking on manifolds , 2005, ICML '05.

[11]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[12]  Mikael Persson,et al.  A novel Bayesian approach to adaptive mean shift segmentation of brain images , 2012, 2012 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS).

[13]  Carlotta Domeniconi,et al.  A Weighted Adaptive Mean Shift Clustering Algorithm , 2014, SDM.

[14]  Gary Bradski,et al.  Computer Vision Face Tracking For Use in a Perceptual User Interface , 1998 .

[15]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .

[16]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[17]  Julio Gonzalo,et al.  A comparison of extrinsic clustering evaluation metrics based on formal constraints , 2008, Information Retrieval.

[18]  Simon P. Wilson,et al.  Mean Shift Algorithm with Heterogeneous Node Weights ∗ , 2010 .

[19]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Ilan Shimshoni,et al.  Mean shift based clustering in high dimensions: a texture classification example , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[21]  Francesco Calabrese,et al.  Time of arrival predictability horizons for public bus routes , 2011, CTS '11.

[22]  Dorin Comaniciu,et al.  The Variable Bandwidth Mean Shift and Data-Driven Scale Selection , 2001, ICCV.

[23]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[24]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[25]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[26]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .